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Abstract. Electronic health records (EHRs) contain both ordered and unordered
chronologies of clinical events that occur during a patient encounter. However,
during data preprocessing steps, many predictive models impose a predefined or-
der on unordered clinical events sets (e.g., alphabetical, natural order from the
chart, etc.), which is potentially incompatible with the temporal nature of the se-
quence and predictive task. To address this issue, we propose DPSS, which seeks
to capture each patient’s clinical event records as sequences of event sets. For
each clinical event set, we assume that the predictive model should be invariant
to the order of concurrent events and thus employ a novel permutation sampling
mechanism. This paper evaluates the use of this permuted sampling method given
different data-driven models for predicting a heart failure (HF) diagnosis in sub-
sequent patient visits. Experimental results using the MIMIC-III dataset show
that the permutation sampling mechanism offers improved discriminative power
based on the area under the receiver operating curve (AUROC) and precision-
recall curve (pr-AUC) metrics as HF diagnosis prediction becomes more robust
to different data ordering schemes.
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1 Introduction

Using the growing amounts of electronic health record (EHR) data, increasing attention
has been paid to using data-driven machine learning (ML) methods for a range of clas-
sification and predictive tasks, including disease phenotyping and risk stratification [4,
15]. Implicit to these ML-based approaches are a data representation that embodies the
temporal nature of such data. One challenge of modeling clinical event data is to learn
the representation that aligns with medical knowledge [6, 8, 19], where events (i.e., lab-
oratory results, medications, diagnoses, etc.) can be extracted from time-stamped EHRs
and other health-related information, such as claims data. However, many studies mod-
eling such data fail to fully capture the nature of clinical events. For instance, stud-
ies modeling claim code sequences only consider temporality between visits, absent
of within-visit dynamics [25] that contain essential contextual information. While other
approaches utilizing time-stamped EHR events incorporate sequential order within-visit
[12, 20], they model a patient’s medical history as a fully ordered event sequence de-
spite the fact that the sequence may contain unordered event sets when multiple events
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happen concurrently (i.e., sharing the same timestamp). An arbitrary ordering (e.g., ran-
dom, alphabetical, etc.) is usually imposed on each event set during data preprocessing
to establish a “structured” input (e.g., matrices, vectors or tensors) used in different ML
models, including contemporary deep learning methods. Consequently, models trained
on the corresponding data can be sensitive to the input sequence order as they assume
elements from each input sequence to be strictly ordered [30].

The partially-unordered nature of event sequences in the EHR calls for permutation-
invariant models: the prediction based on a patient’s medical history should not be af-
fected when the order of concurrent events is changed. In this study, we propose DPSS
(Diagnostic Prediction with Sequence-of-Sets), an end-to-end deep learning architec-
ture that incorporates set learning techniques [32] to model event sequences to support
downstream diagnostic prediction. DPSS first introduces a permutation sampling tech-
nique on each set of concurrent clinical events. A self-attentive gated recurrent unit
(GRU) model is then deployed on top of the permutation samples to characterize mul-
tiple sets of concurrent events in a patient visit history and correspondingly estimates
the risk of specific diseases. To characterize the contextual features of a clinical event,
DPSS also pre-trains an embedding model on a collection of unlabeled event sequences.
The key contributions of DPSS are threefold: 1) an end-to-end framework modeling
clinical temporal event sequences as sequences of sets (SoS) for next-visit disease code
prediction, with the ability to capture the temporal patterns within each clinical visit; 2)
a permutation-invariant prediction mechanism made possible by introducing a permu-
tation sampling technique on SoS; and 3) a demonstration of the utility of a weighted
loss function with additional regularization term enforcing permutation-invariant rep-
resentation of SoS, which further improves the model predictive performance when
using permuted sequences. In this way, DPSS is able to represent clinical event data
as sequences of sets that are more consistent with the nature of clinical documentation
processes.

We evaluate our proposed framework on a binary prediction task for next-visit di-
agnostic code prediction of heart failure (HF) using laboratory and diagnostic code
data from the MIMIC-III dataset [16]. Our experimental results show that approaching
clinical event sequence representation from a set learning perspective with permutation
sampling more accurately characterizes the underlying disease dynamics and achieves
better disease predictive performance. Techniques such as permutation sampling, se-
quence Laplacian regularization, and self-attention promote permutation invariance and
contribute to robustness against different ordering schemes for concurrent events.

2 Related Work

Deep learning on clinical event sequences. Deep learning models, particularly vari-
ants of recurrent neural networks (RNN), have achieved some success in modeling se-
quential data for predictive tasks such as readmission and disease risk [1, 6, 7, 12, 31].
Early efforts in clinical event sequence representation learning focus on constructing
low-dimensional representations of medical concepts through word embedding algo-
rithms proposed for natural language processing (NLP) [10, 31]. Key works improved
concept embedding by incorporating EHR structures [5, 6, 8, 9] and medical ontologies
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[29] to capture the inherent relations of medical concepts. More recent methods seek
to utilize temporal information, instead of using the indexed ordering, to better charac-
terize chronologies [2, 20, 26, 28]. Still, these aforementioned models mostly assume a
fixed temporal order among sequence elements as they serve as inputs, which can cause
discrepancies when modeling inputs containing unordered elements.

Deep set learning. Characterizing heterogeneous feature sets was investigated for ap-
plications in point cloud analysis [21, 27, 32, 33] and graph mining [13, 23]. Essentially,
a permutation-invariant function is needed for set learning to overcome the limita-
tions of sequence models that are permutation-sensitive [24]. Some of these and other
works [24, 27, 32] propose to compress sets of any size into a feature vector using a
permutation-invariant pooling operation (e.g., sum/mean/max pooling), although such
operations are prone to losing information contained in a feature set [33]. In contrast,
permutation sampling-based methods [21, 33] and attention-based methods [18] aim
to resolve this issue. For example, Meng et al. [21] specifically use permutation sam-
pling in a hierarchical architecture and concatenation to integrate set element embed-
ding when modeling the structure as a set of sets.

Despite the partially-unordered nature of medical events, only a few studies [25]
have been conducted to model clinical event sequences as sequence of sets using a
permutation-invariant pooling method. There remains a lack of investigation in the use
of permutation sampling strategies on corresponding tasks with EHR-based data, which
is the focus of this paper.

3 Method

In this section, we first present the design of the proposed framework, DPSS, for next-
visit diagnostic code prediction. Fig. 1 illustrates the architecture of DPSS and its three
components: 1) a pre-trained lab event embedding layer; 2) an event sequence handler
with a permutation sampling mechanism for event sets; and 3) a self-attentive GRU
predictor for diagnostic code classification.

3.1 Preliminary

We use E to denote the vocabulary of lab events, and P to denote the set of patient visit
histories. A patient’s visit history in the EHR is defined as a concatenation of lab event
sets S = [st1 ⊕ st2 ⊕ ... ⊕ stn ] ∈ P , where each set contains lab events with samples
collected at the same time tk, stk = {e1tk , e

2
tk
, ..., emtk ∈ E} . The goal of the diagnostic

code prediction task is to provide a regression model to estimate the risk of developing
a disease for a patient given the visit history S before the most recent visit. In this case,
our goal is to predict codes related to HF.

3.2 The DPSS Framework

Our DPSS framework sequentially incorporates three components to characterize and
perform prediction on a given patient’s visit history. We first pre-train a lab event em-
bedding model on a large collection of unlabeled historical lab event sequences, which
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Fig. 1. Illustration of DPSS architecture

seeks to capture the contextual similarity of lab events. Next, with this pre-trained em-
bedding representing the latent features of each lab event, the permutation sampling
process then generates permutations for each event set in the visit history. Lastly, a
downstream predictor is trained on the permutation-sampled data, learning to predict
the risk for a specific disease while preserving the permutation invariance of concurrent
events. Details of each model component is described as follows.

Pre-trained lab event embeddings. To encode the non-numerical representations of
lab events into numerical representations, we first conduct a pre-training process to
obtain an embedding of LOINC codes. We trained a skip-gram language model [22]
on a collection of unlabeled lab event sequences with the objective of representing the
contextual similarity of lab events in a continuous vector space (obtained by minimizing
log likelihood loss):

LSG = − 1

|P |
∑

seq(S)∈P

∑
−C<j<C

log p(ep+j |ep).

such that seq(S) is a temporally-ordered sequence of a visit history S, and where events
in each concurrent set are arbitrarily ordered. Specifically, we extract lab event se-
quences (from MIMIC-III) as partially-unordered sequences to train the embedding
model. ep is the embedding vector of the t-th event et ∈ seq(S), ep+j is that of a
neighboring event, and C is the size of half context.1

Permutation sampling. Rather than training a decision making model on fixed se-
quences, the learning objective of DPSS is to make consistent decisions even if such

1 The context of a skip-gram refers to a subsequence of an ordered event sequence seq(S) such
that the subsequence is of 2C + 1 length.
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events may be observed in different orders; in our case, this may be dependent on any
number of factors as to how an EHR records the data. Inspired by the recent success
of deep set learning on point clouds [21, 24, 27, 32], we introduce a permutation sam-
pling strategy for patient visit histories. The principle of this process is to generate
event sequences from a given patient’s visit history such that events in a concurrent
event set will be randomly ordered in each training epoch, while the sequential order
across event sets remain unchanged. In detail, given a set of events s, we denote π(s)
as the set of its permutations. A permutation sample of a visit history S is a sequence
Sπ ∈ π(S) = {

⊕n
i=1 π(sti)} that is obtained by sequentially concatenating a permu-

tation of each concurrent event set in S. Specifically, π(S) denotes the universal set
of permutation samples for S. Based on this sampling strategy, the event sequence en-
coder introduced next follows an end-to-end learning process for predicting the target
diseases, while remaining invariant to the order of concurrent events in a patient visit
history.

Self-attentive GRU encoder. We use Sπ = [e1, e2, ..., el] to denote an input vec-
tor sequence corresponding to an embedded lab event sequence after the permutation
sampling process of the visit history, S. The self-attentive gated recurrent unit (GRU)
encoder couples two techniques to represent the embedding representation of the per-
mutation sampled visit history vSπ = A(Sπ).

The GRU is an alternative to a long-short-term memory network (LSTM) [3], which
consecutively characterizes sequential information without using separated memory
cells [11]. Each unit consists of two types of gates to track the state of the sequence,
a reset gate rp and an update gate zp. Given the embedding vector ep of an incoming
event, the GRU updates the hidden state h

(1)
p of the sequence as a linear combination

of the previous state, h(1)
p−1, and the candidate state, h̃(1)

p of a new event ep, calculated
as follows:

h(1)
p = GRU(vp) = zp � h̃(1)

p + (1− zp)� h
(1)
p−1

zp = σ
(
Mzvp +Nzh

(1)
p−1 + bz

)
h̃(1)
p = tanh

(
Msvp + rp � (Nsh

(1)
p−1) + bs

)
rp = σ

(
Mrvp +Nrh

(1)
p−1 + br

)
.

where � denotes the element-wise multiplication. The update gate zp balances the in-
formation of the previous sequence and the new item, where M∗ and N∗ denote differ-
ent weight matrices, b∗ are bias vectors, and σ is the sigmoid function. The candidate
state h̃

(1)
p is calculated similarly to those in a traditional recurrent unit, and the reset

gate rp controls how much information of the past sequence contributes to h̃
(1)
p .

Atop the GRU hidden states, the self-attention mechanism seeks to learn attention
weights that highlight the clinical events that are important to the overall visit history.
This mechanism is added to GRU as below:
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ui = tanh
(
Mah

(1)
i + ba

)
; ai =

exp
(
u>i uSπ

)∑
xi∈Sπ exp

(
u>i uSπ

) ; A(Sπ) = vSπ =

l∑
i=1

aiui

where ui is the intermediary representation of GRU output h(1)
i . uX = tanh(Mah

(1)
X +

ba) is the intermediary latent representation of the averaged GRU output h(1)
X and can

be interpreted as a high-level representation of the entire input sequence. By measuring
the similarity of each ui with uX , the normalized attention weight ai for h(1)

i is pro-
duced through a softmax function. The final embedding representation vSπ of the visit
history is then obtained as the weighted sum of the intermediary representation for each
event in the sequence Sπ .

Learning objective. A multi-layer perceptron (MLP) with sigmoid activation is ap-
plied to the previous embedding representation of the visit history, whose output ĉSπ is
a scalar that indicates the risk of the target disease. The learning objective is to optimize
the loss function defined below.

L = − 1

|P |
∑
S∈P

1

|π(S)|
∑

Sπ∈π(S)

xS log σ(ĉSπ )+(1−xS) log (1− σ(ĉSπ ))+λ ‖vSπ − vS‖

The main loss function uses binary cross-entropy, where xS ∈ {0, 1} is the training
label indicating if the disease code exists in the disease code list from the next patient
visit stn+1

. Optimizing for the main loss enforces predictions to be invariant to the in-
put within-set order. The last term of the loss function corresponds to a graph Laplacian
regularization term, where λ is a small positive coefficient. Notably, this regularization
term teaches the self-attentive GRU encoder to generate similar representations for dif-
ferent permutation samples of the same visit history record, and helps differentiate such
representations from those of unrelated records in the embedding space. We show be-
low that this regularization mechanism is able to improve the prediction accuracy of the
target disease in various experiments.

4 Experiments

We hereby evaluate DPSS on the next-visit HF diagnosis prediction task.

4.1 Dataset

We evaluated DPSS using data from MIMIC-III [16], a publicly available clinical dataset
associated with patients admitted to critical care units of Beth Israel Deaconess Medi-
cal Center between 2001 and 2012. MIMIC-III contains records from different sources
including demographics, lab results, medications, CPT (Current Procedural Terminol-
ogy) procedures, and ICD-9 (International Classification of Diseases) diagnostic codes.
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The within-visit temporal information for diagnostic and procedure codes is not avail-
able in MIMIC-III as they are only specific to a patient visit; and while medications are
tagged with timestamps, they are recorded with a duration (i.e., start and end times),
which poses further challenges on determining the relative ordering between medica-
tion and lab events. To simplify our task, we choose to model only lab event sequences
as they are less vague with respect to temporal ordering when defined as sequence of
sets. Specifically, the timestamp recorded for lab events in MIMIC-III indicates sample
acquisition time so a set of lab events with shared timestamps inform patient status at a
given time point.

To perform next-visit HF diagnosis prediction, we extracted 7,235 sequences of
abnormal lab events for adult (age ≥ 18) patients with at least two hospital admissions
from the MIMIC-III dataset by concatenating all abnormal lab events from each visit
history. These sequences, each representing a unique patient, are divided into training
(75%, 5,426 patients), validation (12.5%, 904 patients) and test (12.5%, 905 patients)
datasets. Based on the existence of the level 3 ICD-9 code representing HF, 428, in the
diagnostic codes of the most recent visit, we identified a total of 2,495 HF cases.We
used LOINC codes as the lab event ontology, with 187 unique codes present in our
data. During data preprocessing, all eligible event codes for a patient are extracted by
patient ID and admission ID matching, sorted by chart time. Concurrent events during
the same patient admission are usually imposed with an arbitrary order (e.g., random or
alphabetically ordered event codes) when inputted as part of the sequence.

4.2 Experimental Configuration

We set the pre-trained skip-gram embedding model on LOINC codes with a context
size of 5 and dimensionality of 256. For all reported models, we use the Adam opti-
mizer [17] with a learning rate of 0.001. For each model variant or baseline, we select
hyperparameters that lead to the lowest validation loss during training for testing, with
the maximum number of epochs set to 100. Training may also be terminated before 100
epochs based on early stopping with a patience of 10 epochs on the validation area un-
der the receiver operator characteristic curve (AUROC) metric. The best combination
of GRU layer dimension (candidate values from {64, 128, 256, 512}) and sequence
length (candidate values: {128, 256, 512}) is selected based on the AUROC score on
the validation set.

We compared the proposed method with the following baseline methods: 1) GRU,
a single-layer GRU, as defined in Section 3.2; 2) self-attentive GRU, a GRU model
incorporating the self-attention mechanism; and 3) Pooling GRU, following previous
work [25, 32], we apply a sum-pooling based or a max-pooling based set function on the
set element embedding to acquire a permutation invariant feature aggregation. To show
the effects of different model components of DPSS, we also evaluate different variants
of DPSS, where we remove the sequence Laplacian regularization or self-attention.

4.3 Results

Experiments for baseline models and DPSS are each evaluated on the same holdout test
set. We repeated the evaluations 10 times to calculate 95% confidence intervals (CIs)
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Table 1. Model comparison on next-visit HF risk prediction using MIMIC-III data
Method AUROC (95% CI) pr-AUC (95% CI)

GRU 0.7421(±0.00331) 0.6133(±0.00564)
Self-attentive GRU 0.7405(±0.0034) 0.6386(±0.0074)
Sum-pooling GRU 0.7070(±0.00101) 0.5839(±0.00173)
Max-pooling GRU 0.6954(±0.00116) 0.5730(±0.00361)

DPSS w/o self-attention&Sequence Laplacian 0.7741(±0.00277) 0.6659(±0.00615)
DPSS w/o Sequence Laplacian 0.7748(±0.00176) 0.6752(±0.00309)

DPSS 0.7766(±0.00185) 0.6801(±0.00453)

for test AUROC and pr-AUC. Table. 1 summarizes test performance of the baseline
models and DPSS.

DPSS significantly outperforms the other models in terms of AUROC and pr-AUC
metrics. By comparing all of our permutation sampling based model variants with the
baseline, we show that the effectiveness of addressing the partially-unordered nature
through a permutation sampling mechanism. Specifically, being able to model within-
set element interactions, DPSS is shown to be more suitable for modeling lab events
as a sequence of sets compared to other permutation-invariant aggregation methods
like sum- and max-pooling, with improvements of 9.8% and 11.7% in AUROC, 16.5%
and 18.7% in pr-AUC, respectively and relatively. Comparing DPSS variants, we also
see that sequentially adding the self-attention mechanism and the sequence Laplacian
for permutation-invariant regularization boosted the model’s discriminative power, with
greater improvement observed in pr-AUC, which is a metric that considers the model’s
ability to cope with imbalanced data [8]. As for the impact of the self-attention mecha-
nism, when added to a basic GRU and DPSS without self-attention and Laplacian loss,
the pr-AUC of both models has increased by 4.1% and 1.4%, respectively, while the
AUROC metric remained comparable.

We observe that in the raw data of MIMIC-III, concurrent events are ordered ran-
domly in the extracted event sequence. In other data processing scenarios, the event
set elements are ordered by the primary key (when applicable) or alphabetically or-
dered by code strings. The imposed order could lead to bias toward certain data storage
methods or a specific coding scheme, which is ultimately irrelevant to the underly-
ing disease. Such inconsistencies may also impair a model’s generalizability when the
ordering scheme adopted in training differs from that used during inference. We hy-
pothesized that our set learning framework is able to alleviate the aforementioned bias,
as the sequence representation is not restricted to any event set ordering scheme. To test
this hypothesis, as our previous experiments are trained and tested on data with random
within-set order, we further compared DPSS and the best baseline model against a dif-
ferent event set ordering scheme using test sequences with alphabetically-ordered event
sets. These evaluation results are presented in Table. 2.

The best baseline model, self-attentive GRU, is trained on set sequences with an
imposed arbitrary random order. When tested on alphabetically-ordered set sequences,
it suffers from 0.6% decrease in AUROC and 2.7% decrease in pr-AUC. In contrast,
DPSS’s performance experienced a smaller decline: 0.1% in AUROC and 1.2% in pr-
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Table 2. Comparison against the best baseline method on the test data with a different ordering
scheme (alphabetical) for concurrent events.

Method AUROC (95% CI) pr-AUC (95% CI)
Self-attentive GRU 0.7364(±0.00953) 0.6214(±0.00878)

DPSS 0.7755(±0.00305) 0.6721(±0.00379)

AUC. The results suggest that DPSS benefited from its permutation sampling mecha-
nism and is more robust against different set ordering schemes.

In summary, the experimental results show that DPSS achieved better performance
than the non-permutation sampling-based baseline models on the HF prediction task.
The proposed techniques are shown to better capture the clinical events in the visit his-
tory according to their partially-unordered nature, hence better supports the downstream
decision making.

5 Conclusion

We introduce DPSS, a permutation-sampling-based RNN architecture that supports
diagnostic prediction with sequence-of-set learning on clinical events. Our proposed
method uses a permutation-sampling technique, sequence Laplacian regularization, and
self-attention to learn a permutation invariant representation that allows for more accu-
rate prediction for a binary disease prediction task. We also demonstrated the robustness
of DPSS against arbitrary set orderings by comparing performance on a test set with an
altered set order. For future work, we plan to extend DPSS to jointly model lab event
sequences with medication and demographic information. We also seek to better sup-
port multi-disease prediction by incorporating structured label representations [14] and
leveraging pre-training [34] to improve domain adaptation of DPSS.
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