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Abstract

Computational and cognitive studies of event
understanding suggest that identifying, com-
prehending, and predicting events depend on
having structured representations of a se-
quence of events and on conceptualizing (ab-
stracting) its components into (soft) event cat-
egories. Thus, knowledge about a known pro-
cess such as “buying a car” can be used in
the context of a new but analogous process
such as “buying a house”. Nevertheless, most
event understanding work in NLP is still at the
ground level and does not consider abstrac-
tion. In this paper, we propose an Analogous
Process Structure Induction (APSI) frame-
work, which leverages analogies among pro-
cesses and conceptualization of sub-event in-
stances to predict the whole sub-event se-
quence of previously unseen open-domain
processes. As our experiments and analy-
sis indicate, APSI1 supports the generation
of meaningful sub-event sequences for unseen
processes and can help predict missing events.

1 Introduction

Understanding events has long been a challeng-
ing task in NLP, to which many efforts have been
devoted by the community. However, most exist-
ing works are focusing on procedural (or horizon-
tal) event prediction tasks. Examples include pre-
dicting the next event given an observed event se-
quence (Radinsky et al., 2012) and identifying the
effect of a biological process (i.e., a sequence of
events) on involved entities (Berant et al., 2014).
These tasks mostly focus on predicting related
events in a procedure based on their statistical cor-
relations in previously observed text. As a re-
sult, understanding the meaning of an event might

∗ This work was done when the first author was visiting
the University of Pennsylvania.

1Code is available at: http://cogcomp.org/
page/publication_view/910.

Figure 1: An illustration of leveraging known processes
to predict the sub-event sequence of a new process.

not be crucial for these horizontal tasks. For ex-
ample, simply selecting the most frequently co-
occurring event can offer acceptable performance
on the event prediction task (Granroth-Wilding
and Clark, 2016).

Computational and cognitive studies (Schank
and Abelson, 1977; Zacks and Tversky, 2001)
suggest that inducing and utilizing the hierarchical
structure2 of events is a crucial component of how
humans understand new events and can help many
aforementioned horizontal event prediction tasks.
Consider the example in Figure 1. Assume that
one has never bought a house, but is familiar with
how to “buy a car” and “rent a house”; referring
to analogous steps in these two relevant processes
would still provide guidance for the target process
of “buy a house”. Motivated by this hypothesis,
our work proposes to directly evaluate a model’s
event understanding ability. We define this as the

2The original paper refers to the knowledge about pro-
cesses and their sub-events as event schemata.

http://cogcomp.org/page/publication_view/910
http://cogcomp.org/page/publication_view/910


Figure 2: Demonstration of the proposed APSI framework. Given a target process P , we first decompose its
semantics into two dimensions (i.e., predicate and argument) by grouping processes that share a predicate or an
argument. For each such group of processes, we then leverage the observed process graphs G to generate an
abstract and probabilistic representation for their sub-event sequences. In the last step, we merge them with an
instantiation module to produce the sub-event sequence of P .

ability to identify vertical relations, that is, to pre-
dict the sub-event sequence of a new process3.
We require models to generate the sub-event se-
quence for a previously unobserved process given
observed processes along with their sub-event se-
quences, which we refer to as “the observed pro-
cess graphs" in the rest of this paper. This task is
more challenging than “conventional" event pre-
dictions tasks, since it requires the generation of a
sub-event sequence given a new, previously unob-
served, process definition.

To address this problem, we propose an Anal-
ogous Process Structure Induction (APSI) frame-
work. Given a new process definition (e.g., ‘buy
a house’), we first decompose it into two dimen-
sions: predicate and argument. For each of these,
we collect a group of processes that share the
same predicate (i.e., ‘buy-ARG’) or same argu-
ment (i.e., ‘PRE-house’), and then induce an ab-
stract and probabilistic sub-event representation
for each group. Our underlying assumption is that
processes that share the same predicate or argu-
ment could be analogous to each other, and thus
could share similar sub-event structures. Finally,
we merge these two abstract representations, us-
ing an instantiation module, to predict the sub-
event structure of the target process. By doing so,
we only need a small number of analogous pro-

3A process is a more coarse-grained event by itself. We
use this term to distinguish it from sub-events.

Figure 3: Examples of Sub-Event Representations.

cesses (as we show, 20, on average) to generate
unseen sub-events for the target process. Intrin-
sic and extrinsic evaluations show that APSI out-
performs all baseline methods and can generate
meaningful sub-event sequences for unseen pro-
cesses, which are proven to be helpful for predict-
ing missing events.

The rest of the paper is organized as follows.
Section 2 introduces the Analogous Process struc-
ture induction (APSI) framework. Section 3
describes our intrinsic and extrinsic evaluation,
demonstrating the effectiveness of APSI and the
quality of the induced process knowledge. We dis-
cuss related works in Section 4 and conclude this
paper with Section 5.

2 The APSI Framework

Figure 2 illustrates the details of the proposed
APSI framework. Given an unseen process P , a
target sub-event sequence length k, and a set of



observed process graphs G, the task is to predict a
k-step sub-event sequence [E′1, E

′
2, ..., E

′
k] for P .

Each process graph G ∈ G in the input contains a
process definitionPG and an n-step temporally or-
dered sub-event sequence [EG

1 , E
G
2 , ..., E

G
n ]. We

assume that each process P is described as a com-
bination of a predicate and an argument (e.g.,
‘buy+house’) and each sub-event E ∈ E is
given as verb-centric dependency graph as used
in (Zhang et al., 2020b) (see examples in Figure 3).
In APSI, we decompose the target process into
two dimensions (i.e., predicate and argument). For
each target process, we collect a group of observed
process graphs that share either the predicate or
the argument with the target process; we assume
that processes in these groups have sufficient in-
formation for predicting the structure of the target
process. We then leverage an event conceptualiza-
tion module to induce an abstract representation
of each process group. Finally, we merge the two
abstract, probabilistic representations and instanti-
ate it to generate a ground sub-event sequence as
the final prediction. Detailed descriptions of APSI
components are introduced as follows.

2.1 Semantic Decomposition
Each process definition P is given as a predicate
and its argument, which we term below the two
“dimensions” of the process definition. We then
collect all process graphs in G that have the same
predicate as P into Gp and those that have the same
argument into Ga. We assume that these two sets
provide the information needed to generate an ab-
stract process representation that would guide the
instantiation of the event steps for P .

2.2 Semantic Abstraction
The goal of the semantic abstraction step is to ac-
quire abstract representations Sp and Sa for Gp
and Ga respectively, to help transfer the knowl-
edge from the grounded observed processes to the
target new process. To do so, we first need to
conceptualize observed sub-events in Gp and Ga
(e.g., “eat an apple”) to a more abstract level (e.g.,
“eat fruit”). Clearly, each event could be concep-
tualized to multiple abstract events. For exam-
ple, “eat an apple” can be conceptualized to “eat
fruit” but also to “eat food”, and the challenge is
to determine the appropriate level of abstraction.
On one hand, the conceptualized event cannot be
too general, as we do not want to lose touch with
the original event, and, on the other hand, if it

is too specific, we will not aggregate enough in-
stances of sub-events into it, thus we will have
difficulties transferring knowledge to the new un-
seen process. To automatically achieve the bal-
ance between these conflicting requirements and
select the best abstract event for each observed
sub-event, we model it as a weighted mutually ex-
clusive set cover problem (Lu and Lu, 2014) and
propose an efficient algorithm, described below, to
solve it. We then merge the repeated conceptual-
ized events and determine their relative positions.

2.2.1 Modeling Event Conceptualization
For each event E, we first identify all potential
events that it can be conceptualized to. If two sub-
events E1 and E2 can be conceptualized to the
same event C, we place E1 and E2 into the set
EC . To qualitatively guide the abstraction process
we introduce below a notion of semantic loss that
we incur as we move up to more abstract represen-
tations. To measure the semantic loss during the
conceptualization, we assign weight to each set:

W (EC) =
1∑

E∈EC F (E,C)
, (1)

where F (E,C) is a scoring function, defined be-
low in Eq. 2, that captures the amount of “seman-
tic details" preserved due to abstracting from E
to C. With this definition, the event conceptual-
ization problem can be formalized as finding ex-
clusive4 sets (such as C) that cover all observed
events with minimum total weight. In the rest of
this section, we first introduce how to collect po-
tential conceptualized events for each E, how we
define F , and how we solve this discrete optimiza-
tion problem.
Identifying Potential Conceptualizations As-
sume that sub-event E contains m words
wE
1 , w

E
2 , ..., w

E
m, each corresponds to a node

in Figure 3; for each of these, we can re-
trieve a list of hypernym paths from Word-
Net (Miller, 1998). For example, given the word
“house”, WordNet returns two hypernym paths5:
(1) “house”→“building”→“structure”→...; (2)
“house”→“firm”→“business”→.... As a result,
we can find

∏
w∈E L(w) potential conceptualized

events forE, where L(w) is the number ofw’s hy-
pernyms. We denote the potential conceptualized
event set for E as CE and the overall set as C.

4No sub-event can appear in two selected sets.
5We omit the synset number for clear representation.



Algorithm 1 Event Conceptualization
INPUT: Set of events E . Each E ∈ E is associated
with a set of potential conceptualization events CE .
The overall conceptualized event set C.

1: Initialize event partition set P := ∅.
2: while E 6= ∅ do
3: for Each E ∈ E do
4: for Each C ∈ CE do
5: EC := ∅.
6: Compute F (E,C) using Eq. (2).
7: end for
8: end for
9: for Each C ∈ C do

10: for Each E ∈ E do
11: if C ∈ CE then
12: EC := EC ∪ {E}.
13: end if
14: end for
15: Compute W (EC) using Eq. (1).
16: end for
17: Select ECmin with the minimum W score.
18: E := E \ ECmin

19: P := P ∪ {ECmin}.
20: end while

OUTPUT: Partition of n event subsets P =
{E1, E2, ..., En}, where each subset Ei corresponds
to a unique conceptualized event Ci.

Conceptualization Scoring As mentioned above,
for each pair of a sub-event E and its potential
conceptualization C, we propose a scoring func-
tion F (E,C) to measure how much “semantic in-
formation" is preserved after the conceptualiza-
tion. Motivated by Budanitsky and Hirst (2006)
and based on the assumption that the more abstract
the conceptualized event is, the more semantic de-
tails are lost, we define F (E,C) to be:

F (E,C) =
m∏
i=1

wD(wE
i ,wC

i ), (2)

where D(wE
i , w

C
i ) is the depth from wE

i to wC
i on

the taxonomy path, and w is a hyper-parameter6

measuring how much “semantics" is preserved fol-
lowing each step of the conceptualization.
Conceptualization Assignment Now we are able
to model the procedure of finding proper con-
ceptualized events as a weighted mutually ex-
clusive set cover problem. Note that this is an
NP-complete problem and requires a prohibitive
computational cost to obtain the optimum solu-
tion (Karp, 1972). To obtain an efficient solution
that is empirically sufficient for assigning con-
ceptualized events with reasonable amount of in-

6In practice, we use two separate hyper-parameters wv

and wn for verbs and nouns, respectively.

stances, we develop a greedy procedure as de-
scribed in Algorithm 1. For each retrieved process
graph set Gp or Ga, we collect all its sub-events
as E and use it as the input for the conceptualiza-
tion algorithm. In each iteration, we first compute
the conceptualization score F for all the (E, C)
pairs and then compute the weight score for all
conceptualization sets EC . After selecting the set
with minimum weight, ECmin , we remove all the
events covered by it from E and repeat the process
until no event is left. After the conceptualization,
we merge sub-events that are conceptualized to the
same event and represent them with the resulting
conceptualized event C, whose weight is defined
to be W (C) = 1

W (EC) . Compared with the naive
algorithm, which first expands all possible subsets
(i.e., it includes all subsets of EC for all C) and
then leverages the sort and filter technique to se-
lect the final subsets, we reduce the time complex-
ity from O(|C| · |E|2) to O(n · |C| · |E|), where n
is the number of conceptualized events and is typ-
ically much smaller than |E|.

2.2.2 Conceptualized Event Ordering
After conceptualizing and merging all sub-events,
we need to determine their loosely temporal or-
der (e.g., whether they typically appear at the be-
ginning or the end of these sub-event sequences).
Let the set of selected conceptualized events be C∗.
For each C ∈ C∗, we define its order score T (C),
indicating how likely C is to appear first, as:

T (C) =
∑

C′∈C∗
θ(

∑
EC∈EC

∑
EC′∈EC′

t(EC , EC′)−t(EC′ , EC)),

(3)

where θ is the unit step function and t(EC , EC′)
represents how many times EC appears before
EC′ in an observed process graph.

2.3 Sub-event Sequence Prediction

In the last step, we leverage the two abstract rep-
resentations we got for the predicate and argument
of the target process definition to predict its final
sub-events. To do so, we propose the following
instantiation procedure. We are given the abstract
representations Sp and Sa, for the predicate and
argument, respectively. Each is a set of concep-
tualized events associated with weights and order
scores. For each conceptualized event Cp ∈ Sp,
using each event Ca ∈ Sa, we can generate a new
instantiated event Ĉp. For example, if Cp is “cut
fruit” and Ca is ‘buy an apple’, then our model



would create the new event “cut an apple”. Specif-
ically, for each w ∈ Cp, if we can find a word ŵ
such that ŵ is a hyponym of w, we will replace w
with ŵ and repeat this process until no hyponym
can be detected in Cp. We denote the generated
event by Ĉp. To account for the semantic loss
during the instantiation procedure, we define the
weight and order score of Ĉp as follows:

Ŵ (Ĉp) = W (Cp) · F (Ĉp, Cp) ·

∑
C′a∈Sa

W (C′a)

W (Ca)
(4)

T̂ (Êp) = T (Cp) · F (Ĉp, Cp) ·

∑
C′a∈Sa

W (C′a)

W (Ca)
, (5)

Similarly, we apply the same procedure toCa with
Cp, and denote the resulted event Ĉa. We then
repeatedly merge instantiated events by summing
up their weights and averaging their order scores.
In the end, we select top k sub-events based on the
weights and sort them based on the order score as
the sub-event sequence prediction.

3 Evaluation

In this section, we conduct intrinsic and extrinsic
evaluations to show that APSI can generate mean-
ingful sub-event sequences for unseen processes,
which can help predict the missing events.

3.1 Dataset
We collect process graphs from the WikiHow
website7 (Koupaee and Wang, 2018). In Wiki-
How, each process is associated with a sequence
of temporally ordered human-created steps. For
each step, as shown in Figure 3, we use the tool
released by ASER (Zhang et al., 2020b) to extract
events and construct the process graphs. We select
all processes, where each step has one and only
one event, and randomly split them into the train
and test data. As a result, we got 13,501 train-
ing process graphs and 1,316 test process graphs8,
whose average sub-event sequence length is 3.56.

3.2 Baseline Methods
We compare with the following baseline methods:
Sequence to sequence (Seq2seq): One intuitive
solution to the sub-event sequence prediction task
would be modeling it as a sequence to sequence
problem, where the process is treated as the input
and the sub-event sequence the output. Here we

7https://www.wikihow.com.
8We do not need a development set because the proposed

solution APSI is not a learning-based method.

adopt the standard GRU-based encoder-decoder
framework (Sutskever et al., 2014) as the base
framework and change the generation unit from
words to events. For each process or sub-event,
we leverage pre-trained word embeddings (i.e.,
GloVe-6b-300d (Pennington et al., 2014)) or lan-
guage models (i.e., RoBERTa-base (Liu et al.,
2019)) as the representation, which are denoted as
Seq2seq (GloVe) and Seq2seq (RoBERTa).
Top One Similar Process: Another baseline is the
“top one similar process”. For each new process,
we can always find the most similar observed pro-
cess. Then we can use the sub-event sequence of
the observed process as the prediction. We employ
different methods (i.e., token-level Jaccard coeffi-
cient or cosine similarity of GloVe/RoBERTa pro-
cess representations) to measure the process simi-
larity. We denote them as Top one similar process
(Jaccard), (GloVe), and (RoBERTa), respectively.

For each process, we also present a randomly
generated sequence and a human-generated se-
quence9 as the lower-bound and upper-bound for
sub-event sequence prediction models.

3.3 Intrinsic Evaluation

We first present the intrinsic evaluation to show
the quality of the predicted sub-event sequences of
unseen processes. For each test process, we pro-
vide the process name and the sub-event sequence
length10 to evaluated systems and ask them to gen-
erate a fixed-length sub-event sequence.

3.3.1 Evaluation Metric
Motivated by the ROUGE score (Lin, 2004), we
propose an event-based ROUGE (E-ROUGE) to
evaluate the quality of the predicted sub-event se-
quence. Specifically, similar to ROUGE, which
evaluates the generation quality based on N-gram
token occurrence, we evaluate how much percent-
age of the sub-event and time-ordered sub-event
pairs in the induced sequence is covered by the
human-provided references. We denote the eval-
uation over single event and event pairs as E-
ROUGE1 and E-ROUGE2, respectively. We also
provide two covering standards to better under-
stand the prediction quality: (1) “String Match”:
all words in the predicted event/pairs must be the
same as the referent event/pairs; (2) “Hypernym
Allowed”: the predicted and referent event must

9The human-generated sequence is randomly selected
from the WikiHow and excluded during the evaluation.

10We select the majority length of all references.



Model String Match Hypernym Allowed
E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2

Random 2.9165 0.4664 23.5873 8.1089

Seq2seq (GloVe) 5.0323 1.4965 27.8710 13.0946
Seq2seq (RoBERTa) 4.5455 0.4831 28.0032 12.8502

Top one similar process (Jaccard) 8.8589 5.1000 28.6548 14.6231
Top one similar process (GloVe) 9.8797 5.1452 29.4203 13.6001
Top one similar process (RoBERTa) 9.2599 4.7390 30.6599 15.8417

Analogous Process Structure Induction (APSI) 14.8013 6.6045 36.1648 19.2418

Human 29.0189 15.2542 50.4647 29.4423
(a) Basic Setting (for each sub-event, we only predict and evaluate the verb)

Model String Match Hypernym Allowed
E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2

Random 0.0000 0.0000 0.5104 0.0903

Seq2seq (GloVe) 0.1935 0.0534 0.9677 0.1069
Seq2seq (RoBERTa) 0.4870 0.0000 1.7857 0.2899

Top one similar process (Jaccard) 0.6562 0.2257 2.4797 0.5867
Top one similar process (GloVe) 0.8750 0.2106 2.8801 0.7372
Top one similar process (RoBERTa) 0.9479 0.3009 3.2811 0.9929

Analogous Process Structure Induction (APSI) 3.4988 0.4513 6.1611 1.1885

Human 11.6351 5.5905 18.0034 8.2695
(b) Advanced Setting (for each sub-event, we predict and evaluate all words)

Table 1: Intrinsic evaluation results of the induced process structures. On average, we have 1.7 human-generated
sub-event sequences as the references for each test process. Best performing models are marked with the bold font.

have the same dependency structure, and for the
words on the same graph position, they should be
the hypernym of or same as each other. For ex-
ample, if the referent event is “eat apple” and the
predicted event is “eat fruit”, we still count it as
a match. The “String Match” setting is stricter,
but the “Hypernym Allowed” setting also has its
unique value to help better understand if our sys-
tem is predicting relevant sub-events.

3.3.2 Implementation Details
In terms of training, we set both wv and wn to
be 0.5 for our model. For the seq2seq baselines,
we set the learning rate to be 0.001 and train the
models until they converge on the training data.
All other hyper-parameters following the original
paper. In terms of the evaluation, we also pro-
vide two settings. (1) Basic: we follow previous
works (Glavas et al., 2014) to predict and evaluate
events based on verbs; (2) Advanced: we predict
and evaluate events based on all words.

3.3.3 Result Analysis
We show the results in Table 1. In general, there is
still a notable gap between current models’ per-
formance and human performance, but the pro-

posed APSI framework can indeed generate suf-
ficiently relevant sub-events. For example, if we
only consider the verb. Even in the string match
setting, 14.8% of the predicted event and 6.6% of
the ordered event pairs are covered by the refer-
ences, which is much better than the random guess
and nearly half of the performance of human be-
ings. If hypernym is allowed, 36% and 19% of the
predicted event and event pairs are covered. Be-
sides that, if we take all words in the event into
consideration, the task becomes more challeng-
ing. Specifically, even human can only achieve
11.63 E-ROUGE1 and 5.59 E-ROUGE2, which
suggests that low scores achieved by current mod-
els are probably due to the limitation of the current
dataset (e.g., on average, we only have 1.7 refer-
ences for each test process). If more references
are provided, the performance of all models will
also increase. In the rest of the intrinsic evaluation,
we present more detailed analysis based on the ad-
vanced setting (string match) and a case study to
help better understand the performance of APSI.

3.3.4 Effect of the Instantiation Module
One key step in our framework is how to leverage
the two abstract representations to predict the fi-



Figure 4: Hyper-parameter influence on the quality of APSI generated sub-event sequences. For both wv and wn, 0
indicates no conceptualization and the larger the value, the deeper the conceptualization is. Best performing ranges
are marked with red boxes, which indicate that the suitable conceptualization level is the key to APSI’s success.

Model E-ROUGE1 E-ROUGE2

Simple Merge 2.5884 0.4062
Normalized 2.2238 0.3611

APSI (Instantiation) 3.4988 0.4513

Table 2: Performance of different merging methods.

nal sub-event sequence. In APSI, we propose an
instantiation module, which jointly leverages the
two representations to generate detailed events. To
show its effect, we compare it with two other op-
tions: (1) Simple Merge: Merge two represen-
tation and select the top k sub-events based on
the weight; (2) Normalized: First normalize the
weight of all sub-events based on each representa-
tion and then select the top k sub-events.

From the result in Table 2, we can see that due
to the imbalanced distribution of the two represen-
tations, simply choosing the most weighted sub-
events is problematic. On average, for each predi-
cate, we can collect 18.04 processes, while we can
only collect 1.92 processes for each argument. As
a result, the sub-events in the predicate representa-
tion typically have a larger weight. Thus if we sim-
ply merge them, most of the predicted sub-events
will come from the predicate representation. Ide-
ally, the “normalized” method can eliminate the
influence of such imbalance, but it also ampli-
fies the noise and achieves worse empirical per-
formance. Differently, the proposed instantiation
module uses events in one representation as the
reference to help instantiate the events in the other
one. As a result, we jointly use these two repre-
sentations to generate a group of detailed events,

Figure 5: Case Study. We mark the covered and not
covered predictions with green and red colors.

and then we can select the top k generated new
events. By doing so, we do not only go detailed
from the abstract representation but also avoid the
imbalanced distribution issue.

3.3.5 Hyper-parameter Analysis

In APSI, we use two hyper-parameters wv and wn

to control the conceptualization and instantiation
depth we want over verbs and nouns respectively.
0 means no conceptualization and the larger value
indicates more conceptualization we encourage.
We show the performance of APSI with different
hyper-parameter combinations in Figure 4, from
which we can see that a suitable level of concep-
tualization is the key to the success of APSI. If
no conceptualization is allowed, all the predicted
events are restricted to the observed sub-event,
thus we cannot predict “search house” after see-
ing “search car” and some events about the house.
On the other hand, if we do not restrict the depth of
conceptualization, all the sub-events will be con-
ceptualized to be too general. As a result, even
with the instantiation module, we could not pre-
dict the detailed sub-event as we want.



Figure 6: Demonstration of the event masked LM.
Pre-trained language models are trained to predict the
masked event given other events as the context.

3.3.6 Case Study
Figure 5 shows an example that we use to analyze
the current limitations of APSI. We can see that
APSI can successfully predict events like “iden-
tify symptoms”, but fails to predict event “identify
causes”. Instead, it predicts “take supplements”.
This is because APSI learns to predict such se-
quence from other processes like “treat diarrhea”
or other diseases in the observed process graphs.
Treating those diseases typically does not involve
identifying the cause, which is not the case for
treating pain. And, treating diseases often involves
taking medicines, which can be conceptualized to
“take supplement”. As no events about pain helps
instantiate “supplement", APSI just predicts it.

3.4 Extrinsic Evaluation

As discussed by (Rumelhart, 1975), the knowl-
edge about process and sub-events can help un-
derstand event sequences. Thus, in this section,
we investigate whether the induced process knowl-
edge can help predict the missing events. Given
a sub-event sequence, for each event in the se-
quence, we can use the rest of the sequence as the
context and ask models to select the correct event
against one negative event example. To make the
task challenging, instead of random sampling, we
follow Zellers et al. (2019) to select similar but
wrong negative candidates based on their repre-
sentation (i.e., BERT (Devlin et al., 2019)) sim-
ilarity. We use the same training and test as the
intrinsic experiment and as a result, we got 13,501
training sequences and 7,148 test questions.

The baseline method we are comparing with is
the event-based masked language model11, whose

11On our dataset, the RoBERTa based event LM model
outperforms existing LSTM-based event prediction models.

Model Accuracy ∆

RoBERTa-based Event LM 73.59% -

+ Seq2seq (GloVe) 73.06% -0.53%
+ Seq2seq (RoBERTa) 72.33% -1.26%

+ Top1 similar (Jaccard) 72.76% -0.83%
+ Top1 similar (GloVe) 74.14% 0.55%
+ Top1 similar (RoBERTa) 74.16% 0.57%

+ APSI 74.78%† 1.19%

+ Human 76.97%‡ 3.38%

Table 3: Results on the event prediction task. † and
‡ indicate the statistical significance over the baseline
with p-value smaller than 0.01 and 0.001 respectively.

demonstration is shown in figure 6. We use pre-
trained RoBERTa-base (Liu et al., 2019) to ini-
tialize the tokenizer and transformer layer and all
sequences of training processes as the training
data. To show the value of understanding the rela-
tionship between process and their sub-event se-
quence, for each sub-event sequence in the test
data, we first leverage the process name and dif-
ferent structure prediction methods to predict sub-
event sequences and use them as additional con-
text to help the event masked LM to predict the
missing event. To show the effect upper bound of
adding process knowledge, we also tried adding
the process structure provided by human beings as
the context12, which is denoted as ‘+Human’. All
models are evaluated based on accuracy.

From the results in Table 3, we can make the
following observations. First, adding high-quality
process knowledge (i.e., APSI and Human) can
significantly help the baseline model, which indi-
cates that adding knowledge about the process can
help better understand the event sequence. Sec-
ond, the effect of process knowledge is positively
correlated with their quality as shown in Table 1.
Adding a low-quality process structure may hurt
the performance of the baseline model due to the
introduction of the extra noise. Third, the current
way of using process knowledge is still very sim-
ple and there is room for better usage of the pro-
cess knowledge, as the research focus of this paper
is predicting process structure rather than applying
it, we leave that for the future work.

12We randomly select another sub-event sequence that de-
scribes the same process from WikiHow, which could be dif-
ferent from the currently tested sequence. As a result, adding
such sequence cannot help predict all missing events.



4 Related Works

Throughout history, considering the importance
of events in understanding human language (e.g.,
commonsense knowledge (Zhang et al., 2020a)),
many efforts have been devoted to define, repre-
sent, and understand events. For example, Verb-
Net (Schuler, 2005) created a verb lexicon to rep-
resent the semantic relations among verbs. Af-
ter that, FrameNet (Baker et al., 1998) proposed
to represent the event semantics with schemas,
which has one predicate and several arguments.
Apart from the structure of events, understand-
ing events by predicting relations among them
also becomes a popular research topic (e.g., Time-
Bank (Pustejovsky et al., 2003) for temporal rela-
tions and Event2Mind (Rashkin et al., 2018) for
causal relations). Different from these horizon-
tal relations between events, in this paper, we
propose to understand event vertically by treating
each event as a process and trying to understand
what is happening (i.e., sub-event) inside the target
event. Such knowledge is also referred to as event
schemata (Zacks and Tversky, 2001) and shown
crucial for how humans understand events (Abbott
et al., 1985). One line of related works in the NLP
community is extracting super-sub event relations
from textual corpus (Hovy et al., 2013; Glavas
et al., 2014). The difference between this work and
them is that we are trying to understand events by
directly generating the sub-event sequences rather
than extracting such information from text. An-
other line of related works is the narrative schema
prediction (Chambers and Jurafsky, 2008), which
also holds the assumption that event schemata can
help understand events. But their research focus is
using the overall process implicitly to help predict
future events while this work tries to understand
events by knowing the relation between processes
and their sub-event sequences explicitly.

5 Conclusion

In this paper, we try to understand events verti-
cally by viewing them as processes and predict-
ing their sub-event sequences. Our APSI frame-
work is motivated by the notion of analogous pro-
cesses, and attempts to transfer knowledge from
(a very small number of) familiar processes to a
new one. The intrinsic evaluation demonstrates
the effectiveness of APSI and the quality of the
predicted sub-event sequences. Moreover, the ex-
trinsic evaluation shows that, even with a naive ap-

plication method, the process knowledge can help
better predict missing events.
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