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Abstract—Current Wikipedia editing approaches typically
summarize a named entity by one main-article supplemented by
multiple sub-articles describing various aspects and subtopics of
the entity. Such separation of articles aims at improving the cu-
ration of content-rich Wikipedia entities. However, a wide range
of Wikipedia-based technologies critically rely on the article-
as-concept assumption, which requires a one-to-one mapping
between entities (or concepts) and the articles that describe these
entities. Thus, the current editing approaches sow confusion and
ambiguity to knowledge representation, and cause problems to a
wide-range of downstream technologies. In this paper, we present
an approach that resolves these problems by differentiating the
main-article from the sub-articles that are not at the core of
entity representations. We propose a hybrid neural article model
that learns on two facets of a Wikipedia article: (i) Two neural
document encoders capture the latent semantic features from
the article title and text contents. (ii) A set of explicit features
measure and characterize the symbolic and structural aspects
of each article. In this study, we use crowdsourcing to create a
large annotated dataset for feature extraction, and for evaluating
a variety of encoding techniques and learning structures. The
optimized model so derived identifies main articles with near-
perfect precision and recall, and outperforms various baselines
on the contributed dataset.

I. INTRODUCTION

Wikipedia has been one of the most important sources of
knowledge on the Web. This vast storage of more than 45
million encyclopedia articles for real-world entities has stim-
ulated important computational research on knowledge base
construction [21], commonsense reasoning [34], and natural
language understanding [27]. It has also triggered countless
content management and retrieval technologies for semantic
search [25], question answering [4], and data linage [43].

Most aforementioned technologies essentially rely on a key
assumption called article-as-concept [24, 22, 7], which regu-
lates a one-to-one mapping between entities (or concepts) and
the associated Wikipedia articles. However, this assumption is
being nullified by the recent trends of editing in Wikipedia,
which encourage editors to divide entities with rich contents
into multiple articles that will later be managed independently
[1, 24]. Such content splitting process typically places the
contents into one main-article for the general summarization
of a named entity, and multiple sub-articles for the description

of specific aspects and subtopics of the entity. For example,
as shown in Fig. 1, the entity Harry Potter is provided with
an overall introduction in its main-article, while some content
details of its sub-topics can also be found in its sub-articles
Wizarding World, Harry Potter Influences and Analogues, and
Harry Potter in Translation. Because the split-off of Wikipedia
articles has shown effectiveness in improving the curation of
rich contents of entities, corresponding editing is now frequent
in Wikipedia. Recent research has indicated that over 70% of
the most popular 1,000 Wikipedia entities have split-offs [24].

Although separating main and sub-articles benefits
Wikipedia users with better content curation, violation of
the article-as-concept assumption causes many deleterious
effects on Wikipedia-based technologies from the following
three perspectives. (i) Ambiguous entity representations.
Separating contents of one entity into articles with different
titles is problematic to Wikipedia-based knowledge base
construction [21, 38], which usually assume the article title
as an entity name and extract relational facts and entity
descriptions from the article contents. Split-off of articles no
doubt sow confusion in corresponding processes. Meanwhile,
it also hinders downstream technologies such as named
entity recognition [29], document relatedness analysis [14]
and question answering [4], which are all based on the
representations of entities that are free from ambiguity. (ii)
Diffused entity descriptions. Diffusing entity descriptions
across multiple articles seriously affects semantic search of
entities [25, 9], which require the general summarizations
of those entities to be identified from the descriptions on
sub-topics. Linage of entities [43] is also hard to track, since
the contents of an entity now span across multiple pages.
(iii) Cross-lingual inconsistency. Multilingual tasks such as
knowledge alignment [6, 8, 31, 35], content synchronization
[3] and bilingual Wikification [37] are also challenged, since
these tasks typically assume one-to-one match of articles
across language versions of Wikipedia.

To support these crucial technologies, it is highly demanded
to address the main-article identification problem, which seeks
to automatically differentiate between the main and sub-
articles in Wikipedia. Through the resolve of this problem,
the article-as-concept assumption can be restored through the
1-to-1 mapping between main-articles and the entities they978-1-7281-0858-2/19/$31.00 ©2019 IEEE



(a) Main-article (b) Sub-articles

Fig. 1: Main and sub-articles of entity Harry Potter.

summarize. However, it is a non-trivial mission for a model to
precisely capture the distinction of these two styles of articles
for several reasons: (i) This objective requires a model to
identify the summary style of main-article contents, which
is invariant to the topics and meanings of articles. (ii) The
model should also differentiate those from sub-articles that
are semantically similar to main-articles with shared content
details. (iii) In addition to text contents, the characteristics of
both articles can also be reflected from different components of
Wikipedia articles, including titles, links and article structures.
Besides, a large collection of labelled main and sub-articles are
also needed for the extraction of features to capture the style
differences of the two article types.

We propose a model that addresses the main-article identifi-
cation problem. The proposed model employs a hybrid learn-
ing architecture that characterizes two facets of a Wikipedia
article: (i) Two neural document encoders respectively cap-
ture the latent semantic features from the article titles and
text contents, for which we extensively explore with a wide
variety of encoding techniques and learning structures. (ii)
A comprehensive set of explicit features are also used to
measure the symbolic and structural aspects of the articles. A
large crowdsourced dataset is created to support the evaluation
and feature extraction for the task. Held-out estimation on
the dataset distinguishes the proper document encoding tech-
niques, and proves the effectiveness of the best model variants
for achieving near-perfect precision and recall for identifying
main-articles, and significantly outperform various baselines.
Ablation study also offers insights in feature selection for
characterizing Wikipedia main and sub-articles.

II. RELATED WORK

The violation of the article-as-concept assumption in
Wikipedia have been problematized very recently [24]. A
few recent works have focused on the sub-article matching
problem, which aims at identifying the association between
main and sub-articles based on candidate article pairs. Cor-
responding solutions are relevant to the learning of article
pair models for discourse relations [32, 42]. To capture the

relation of article pairs, Lin et al. [24] train several statistical
learning algorithms on a set of handcrafted features. These
features focus on measuring the symbolic similarity, relative
centrality and cross-lingual co-occurrence of these article pairs
in Wikipedia. Chen et al. [7] propose a hierarchical learning ar-
chitecture that incorporates neural article pair models with the
features in [24]. This approach has shown the state-of-the-art
performance on detecting the match of main and sub-articles
on large collections of candidate article pairs. However, the
sub-article matching problem relies on the premise that main-
articles and sub-articles can be differentiated between, so as to
generate valid candidates for the corresponding models. This
is exactly the focus of the main-article identification problem
which we seek to address.

Research on neural text classification represents one funda-
mental problem of natural language processing. Tasks based
on this problem normally span in two categories, i.e. sentiment
classification and topic classification [46, 44]. Downstream
classifiers for corresponding tasks rely on successfully extract-
ing the semantic features from text, and many recent efforts
adopt different forms of deep neural document encoders for
this purpose. These encoders typically employ CNN [19] or
variants of RNN [39, 45] to aggregate the lexical semantic fea-
tures and sequence information of sentences. On top of these,
some works introduce attention mechanisms, which seek to
highlight the lexical semantics that are important to the overall
meanings or sentiments of sentences and paragraphs [39, 5].
Hierarchical [36, 46] and hybrid [20, 16] learning structures
of neural sentence encoders are proposed to aggregate the
semantic features of multiple sentences, which achieves state-
of-the-art performance for sentiment and topic classification of
long paragraphs. The main-article identification problem en-
tails the semantic representations of text contents and titles of
Wikipedia articles. However, while we have experimented with
a wide variety of neural document classification techniques,
we show that successfully identifying main-articles is rather
challenging with the latent semantic features alone. Unlike
sentiments and topics that are solely implied by the semantic



meanings of text, the summary style of main-articles to be
comprehended by the model is invariant to topics and mean-
ings of the article contents. And this challenging problem also
depends on comprehensively characterizing other aspects of
Wikipedia articles, such as their hyperlink structures, section
structures and symbolic measures.

III. MODELING

We hereby introduce our model for Wikipedia main-article
identification. We begin with denotations and the problem
definition.

A. Preliminaries

Denotations. Denotations of Wikipedia articles are coherent to
those in [7]. We use W to denote the set of Wikipedia articles.
An article Ai ∈W is modeled as a triple Ai = (ti, ci, oi), such
that ti is the title, ci the text contents, and oi the miscellaneous
structural information such as templates, sections and links.
ti = wt1, wt2, ..., wtl and ci = wc1, wc2, ..., wcm thereof are
both sequences of lexicons. ci is also partitioned into multiple
sentences, i.e. ci = s1 ⊕ s2 ⊕ ... ⊕ sn. For simplicity, we
use sj ⊂ ci to denote that sj is a sentence of ci, which is
a consecutive subsequence of ci. In practice, we use the first
paragraph of Ai to represent ci, since it is the summary of
the article contents. For each word w, we use bold-faced w to
denote its embedding representation. We use F (Ai) to denote
a series of explicit features that provide some symbolic and
structural measures for titles, text contents and link structures
of Ai, which we are going to specify in Section III-C. We
assume that all articles to be differentiated by the model is
written in the same language, as a separated solution can be
developed for each language version of Wikipedia. In this
paper, we only consider English articles w.l.o.g.
Problem definition. Main-article identification is defined as a
binary classification problem on the Wikipedia article set W .
Given an article Ai ∈ W , a model should decide whether Ai

is a main-article or not. Note that this set of articles excludes
those that belong to a meta-article category such as Lists 1 and
Disambiguation 2, which are considered to be neither of the
two article types of our interest. Ai is a main-article if ti is
a stand-alone entity name, and ci generally summarizes most
aspects of the entity name ti. Otherwise, Ai is a sub-article.
To address the main-article identification problem, our model
learns on a combination of two aspects of each Wikipedia
article. Neural document encoders extract the latent semantic
features from text, while a series of explicit features are
incorporated to characterize the symbolic or structural aspects.
In the following, we introduce each component of our model
in detail.

B. Neural Document Encoders

We investigate with multiple variations of neural document
encoders. The basic plain encoders capture the latent semantic
feature from a sequence of lexicons, which can be used to

1https://en.wikipedia.org/wiki/Category:Lists
2https://en.wikipedia.org/wiki/Wikipedia:Disambiguation

represent the title and the text contents of a given article.
The hierarchical and hybrid hierarchical encoders consider the
paragraphical structures of text contents, and provide a multi-
granular composition of semantics.

1) Plain Encoders: A plain document encoder EP (X)
encodes a sequence of lexicons X into an embedding vector
of a sentence or the whole text contents of an article. We
explore with three widely used encoding techniques that form
the plain encoder, i.e., the convolutional encoders (CNN), the
gated recurrent unit encoders (GRU), and self-attentive GRU
encoder (ATT).
Convolutional encoders. A CNN employs the 1-dimensional
convolution layer to encode an input sequence [7]. Given the
input sequence X = {w1, w2, ..., wl}, a convolution layer
applies a kernel Mc ∈ Rh×k to generate a latent representation
h
(1)
i from a window of the input vector sequence wi:i+h−1 by

h
(1)
i = tanh(Mcwi:i+h−1 + bc)

for which h is the kernel size and bc is a bias vector.
The convolution layer applies the kernel to all consecutive
windows to produce a sequence of latent vectors H(1) =

h
(1)
1 ⊕h

(1)
2 ⊕ ...⊕h

(1)
l−h+1, where each latent vector leverages

the significant local semantic features from each h-gram of the
input sequence. Like many other works [19, 17, 33], we apply
n-max-pooling to extract robust features from each n-stride of
the convolution outputs by h

(2)
i = max(h

(1)
i:n+i−1), while the

last layer uses a global average pooling [23] to obtain a vector
representation of the input sequence.
Gated Recurrent Units. The GRU encoder is an alternative
to LSTM [10], which consecutively characterizes sequence
information without using separated memory cells [7]. Each
unit consists of two types of gates to track the state of the
sequence, i.e. the reset gate rt and the update gate zt. Given
the vector representation wt of an incoming item wt, GRU
updates the hidden state h

(3)
t of the sequence as a linear

combination of the previous state h
(3)
t−1 and the candidate state

h̃
(3)
t of new item wt, which is calculated as below.

h
(3)
t = zt � h̃

(3)
t + (1− zt)� h

(3)
t−1

The update gate zt balances between the information of the
previous sequence and the new item, where Mz and Nz are
two weight matrices, bz is a bias vector, and σ is the sigmoid
function. The candidate state h̃

(3)
t is calculated similarly to

those in a traditional recurrent unit. And the reset gate rt
controls how much information of the past sequence should
contribute to h̃

(3)
t .

zt = σ
(
Mzwt +Nzh

(3)
t−1 + bz

)
h̃
(3)
t = tanh

(
Mswt + rt � (Nsh

(3)
t−1) + bs

)
rt = σ

(
Mrwt +Nrh

(3)
t−1 + br

)
The above defines a GRU layer which outputs a sequence

of hidden state vectors given the input sequence X . While a



GRU encoder can consist of a stack of multiple GRU layers,
without an attention mechanism, the last hidden state h

(3)
X of

the last layer is extracted to represent the overall meaning of
the encoded sequence. Note that in comparison to GRU, the
traditional LSTM usually performs comparably, but is more
complex and require more computational resources for training
[11].
Self-attention. The self-attention mechanism [12] seeks to
capture the overall meaning of the input sequence unevenly
from each encoded item. One layer of self-attention is calcu-
lated as below.

ut = tanh
(
Mah

(3)
t + ba

)
at =

exp
(
u>t uX

)∑
wm∈X exp (u>muX)

h
(4)
t = |X|atut

ut thereof is the intermediary latent representation of the GRU
output h(3)

t , and uX = tanh(Mah
(3)
X +ba) is the intermediary

latent representation of the last GRU output h
(3)
X that can

be seen as a high-level representation of the entire input
sequence. By measuring the similarity of each ut with uX , the
normalized attention weight at for h

(3)
t is produced through

a softmax function, which highlights an input that contributes
more significantly to the overall meaning. Note that a scalar
|X| (the length of the input sequence) is multiplied along with
at to ut to obtain the weighted representation h

(4)
t , so as

to keep h
(4)
t from losing the original scale of h

(3)
t . A latent

representation of the sequence is calculated as the average of
the last attention layer E(2)

P (X) = 1
|X|
∑|X|

t=1 ath
(4)
t .

2) Hierarchical and Hybrid Encoders: A hierarchical en-
coder provides a multi-granular encoding process for an article
using two levels of plain encoders. A sentence-level encoder
E

(s)
P first aggregate the lexical semantics for each sentence

sj ⊂ ci. Note that the parameters of E(s)
P are shared among

the encoding process of all sentences in an article. On top of
that, an article-level plain encoder E(a)

P is used to combine the
encodings of all sentences into the latent semantic representa-
tion of the whole text contents. Hence, the embedding of the
given ci is obtained as follows:

EH(ci) = E
(a)
P

⊕
sj⊂ci

E
(s)
P (sj)


Different types of E(a)

P correspond to different purposes for
composing the sentential semantics. CNN thereof, seeks to
preserve the local interactions of consecutive sentences [18],
while GRU and attentive GRU focus on capturing the se-
quence of sentential semantics, and highlighting the important
sentences that have overall more contributions to the article
topics [36, 40]. Adopting the same one of the three encod-
ing techniques for E(s)

P and E
(a)
P lead to three variants of

regular hierarchical encoders. Meanwhile, six types of hybrid
hierarchical encoders (or simply, hybrid encoders) employ

differently the techniques for E(s)
P and E

(a)
P . Details of the

model variants led by different forms of hierarchical encoders
are described in Section IV-B.

C. Explicit Features

In addition to the latent semantic features captured by
neural document encoders, we define a set of explicit features
F (Ai) = {fself , ntps, nsen, nsec, rtto, rcto, rsto, din, dout} for
an article Ai:
• fself : self-mentioning ratio, which is defined as the term-

frequency of title ti in text content ci.
• ntps: the average number of tokens per sentence in ci,

which provides a verbosity measure of the article.
• nsen: the number of sentences in ci.
• nsec: the number of sections Ai is divided into.
• rtto: the maximum token overlap ratio of ti with titles of

other articles.
• rcto: the maximum token overlap ratio of ti with section

titles of other articles.
• rsto: the maximum token overlap ratio of section titles of
Ai with titles of other articles.

• din: in-degree centrality of Ai based on inline hyperlinks.
• dout: out-degree centrality of Ai based on inline hyperlinks.

We normalize these features via feature scaling 3, except for
the self-mentioning ratio fself that has already been normal-
ized by definition. These features comprehensively measure
the symbolic and structural aspects of a Wikipedia article. As
shown in our experiments, these features alone are able to
provide effective characterization of the main and sub-articles
categories, and are key to enhance the characterization by the
document encoder.

D. Learning Objective

We use two neural document encoders Et and Ec to encode
the title and text contents of Ai ∈ W respectively. Both
neural document encoders first employ a pre-trained lexicon
embedding layer that captures the lexical semantics in the
embedding space. Et thereof is a plain document encoder,
while Ec can be a plain encoder or a hierarchical encoder. Note
that in cases where a hierarchical Ec is adopted, the sentence-
level encoder E(s)

P utilizes the same encoding technique of Et,
while the article-level E(a)

P may utilize a different encoding
technique to form a hybrid encoder based on different assump-
tions of aggregations for sentential semantics. Two sigmoid
multi-layer perceptrons (MLP) are then applied to Ec(ci) and
Et(ti) to produce two confidence scores zci and zti to support
Ai to be a main-article. Then we concatenate the explicit
features F (Ai) along with the two confidence scores, i.e.
zci ⊕ zti ⊕ F (Ai). On top of that, another set of linear MLP
is applied to obtain the two confidence scores ŷ+Ai

and ŷ−Ai
for

the boolean labels of positive identification l+ and negative
identification l− respectively. Lastly, ŷ+Ai

and ŷ−Ai
are normal-

ized by binary softmax functions y+Ai
=

exp(ŷ+
Ai

)

exp(ŷ+
Ai

)+exp(ŷ−
Ai

)

3https://en.wikipedia.org/wiki/Feature scaling



and y−Ai
=

exp(ŷ−
Ai

)

exp(ŷ+
Ai

)+exp(ŷ−
Ai

)
. The learning objective is to

minimize the following binary cross-entropy loss.

L = − 1

|W |
∑

Ai∈W

(
l+ log y+Ai

+ l− log y−Ai

)
IV. EXPERIMENTS

In this section, we present the experimental evaluation of
the proposed approaches. We first create a large dataset for
the Wikipedia main-article identification problem via massive
crowdsourcing. Using this dataset, we comprehensively eval-
uate several categories of model variants and baselines based.
In addition, we present an ablation study to help the feature
selection for this task.

A. Dataset Preparation

We prepare the dataset through the internal crowdsourcing
platform of anonymous corporation. To first produce some
candidate articles for crowdsourced annotation, a set of candi-
date sub-articles whose titles concatenate two Wikipedia entity
names directly or with a proposition are selected, e.g. French
Economy and Censorship in Finland. Selection of such can-
didate articles is based on the hypothesis that corresponding
formations of titles are more likely to be those of sub-articles.
Then we sample from this set of articles for annotation in the
crowdsourcing platform and instruct the annotators to decide
whether each sampled candidate is a sub-article. If so, the
annotators will be asked to provide the main-article for the
recognized sub-article. The matching of main and sub-articles
is qualified based on two criteria, i.e. Aj is a sub-article of
Ai if (i) Aj describes an aspect or a subtopic of Ai, and (ii)
cj can be inserted as a section of Ai without breaking the
topic summarized by ti. Each crowdsourced article has been
reviewed by three annotators, and is populated into the dataset
if total agreement is reached. This process has populated the
dataset with around 22 thousand articles, where 5,012 are
main-articles, and 17,349 are sub-articles.

B. Main-article Identification

We evaluate the proposed model variants based on held-
out estimation. These model variants are classified into three
categories:

(i) Model variants combining explicit features with three
types of plain document encoders, i.e. CNN+F , GRU+F
and ATT+F .

(ii) Model variants combining explicit features with three
types of regular hierarchical encoders, i.e. HCNN+F ,
HGRU+F and HATT+F , each of which employs the
same encoding technique for sentence/title encoders and
the article-level aggregation.

(iii) Those combining explicit features with six different
hybrid encoders, each of which employs one type of
encoding technique for sentences and titles, and another
type for article-level aggregation of sentence encodings.
Different encoding techniques are denoted separately for
the hybrid encoders, such that we use the superscripts

(t, s) to mark the encoding technique used for sentences
and titles, and (a) to mark that for article-level aggre-
gation. For example, CNN(t,s)+GRU(a) +F denotes the
model where CNN is used for titles and sentences, while
GRU is used for the article-level aggregation of sentential
semantics for the text contents, and explicit features are
also incorporated.

We compare with neural document classifiers without explicit
features that represent the line of related work for document
classification [19, 39, 45, 36, 44, 16]. We have also exper-
imented with the much simpler linear bag-of-words encoder
[15], which is not taken into comparison for its being substan-
tially outperformed by other encoding techniques. Besides, we
also compare with statistical learning algorithms that solely
rely on the explicit features.
Model configurations. We use AMSGrad [30] to optimize
the learning objective loss, for which we set the learning
rate α to 0.001, the exponential decay rates β1 and β2 to
0.9 and 0.999, and batch size to 64. As we have stated in
Section III-A, we encode the first paragraph of each article
to represent its text contents. When inputting text contents
into plain document encoders, we remove stop words in the
text contents, zero-pad short ones and truncate overlength ones
to the sequence length of 150. Hierarchical encoders delimit
the number of sentences to 9, and zero-pad/truncate each
sentence to the sequence length of 20. Such length-normalized
representations allow most (over 92%) of lexicons to be fed
into the document encoders. We also zero-pad short titles to
the sequence length of 14, which is the maximum length of
the original titles. For the implementation of neural document
encoders, we use two layers of the corresponding encoder
type for titles, three for text contents in models that adopt
only plain encoders, and two for sentence encoding and one
for article-level aggregation in models with a hierarchical or
hybrid encoder. The dimensionality of document embeddings
is selected among {100, 150, 200, 300}, for which we fix 100
for titles and 200 for text contents. For CNN, we select kernel
sizes and pool sizes from 2 to 4, with the kernel size of 3 and
2-max-pooling adopted. In addition, we use one hidden layer
in MLPs where the hidden-layer size is the average of the input
and output layer sizes following the convention [41, 2, 7].

For the lexicon embedding layer, we pre-train the Skip-
Gram [26] on the English Wikipedia dump. We use context
size of 20, minimum word frequency of 7 and negative sam-
pling size of 5 to obtain 150-dimensional lexicon embeddings.
After pre-training, we fix the lexicon embeddings to convert
titles and text contents to sequences of vectors to be fed into
the neural document encoder.
Evaluation Protocols. We adopt 10-fold cross-validation in
the evaluation process following previous works of document
classification [19, 39]. At each fold, all models are trained till
convergence. Since the objective of this task is to identify the
relatively rare main-article type, we aggregate precision, recall
and F1-scores on the positive cases at each fold of testing.
Results. Results by all model variants and baselines are



TABLE I: Evaluation results for main-article identification. We report precision, recall and F1-scores (all in percentages) for five groups
of models: (1) Three baseline neural document classifiers with plain encoders and nine with hierarchical or hybrid encoders; (2) Baselines
of statistical classification algorithms based on explicit features, including Logistic Regression, Naive Bayes Classifier (NBC), Linear SVM,
Adaboost (SAMME.R algorithm [47]), Decision Tree (DT) and Random Forest (RF); (3) The proposed Model variants that combine explicit
features with plain encoders, i.e. CNN+F , GRU+F and ATT+F ; (4) Those incorporating explicit features in hierarchical encoders, i.e.
HCNN+F , HGRU+F and HATT+F ; (5) Model variants incorporating explicit features in hybrid encoders, e.g. CNN(t,s)+GRU(a) + F .

Group (1) Group (2) Groups (3) & (4) Group (5)
Models Prec Recall F1 Models Prec Recall F1 Models Prec Recall F1 Models Prec Recall F1 Models Prec Recall F1

CNN 56.09 56.43 56.26 CNN(t,s)+GRU(a) 59.14 51.86 55.26 Logistic 82.48 91.63 86.82 CNN+F 92.72 90.48 91.59 CNN(t,s)+GRU(a) + F 96.04 95.67 97.34
GRU 60.46 51.48 55.61 CNN(t,s)+ATT(a) 60.73 49.73 54.68 NBC 49.93 41.42 45.28 GRU+F 95.45 84.66 89.73 CNN(t,s)+ATT(a) + F 97.13 93.84 95.46
ATT 59.31 52.67 55.79 GRU(t,s)+CNN(a) 59.66 58.18 58.91 Adaboost 89.79 85.72 87.71 ATT+F 95.25 86.89 90.88 GRU(t,s)+CNN(a) + F 98.31 99.01 98.66

HCNN 56.80 55.59 56.19 GRU(t,s)+ATT(a) 62.83 52.42 57.15 Linear SVM 86.76 85.91 86.34 HCNN+F 98.72 90.47 94.42 GRU(t,s)+ATT(a) + F 97.78 92.53 95.08
HGRU 56.90 52.75 54.75 ATT(t,s)+CNN(a) 61.28 58.80 60.01 DT 83.28 79.56 81.37 HGRU+F 97.95 88.46 92.96 ATT(t,s)+CNN(a) + F 98.53 98.84 98.68
HATT 61.75 51.90 56.40 ATT(t,s)+GRU(a) 59.84 53.89 56.71 RF 89.48 88.68 89.08 HATT+F 98.17 88.61 93.15 ATT(t,s)+GRU(a) + F 98.76 94.65 96.66

TABLE II: Ablation on feature categories for ATT(t,s)+CNN(a) +
F .

Features Precision Recall F1
All features 98.53 98.84 98.68
Remove titles 97.73 85.85 91.41
Remove text contents 97.97 91.67 94.71
Remove explicit 61.28 58.80 60.01

title text fself ntps nsen nsec rtto rcto rsto din dout
0.00

0.04

0.08

0.12

0.16

0.20

Fig. 2: Relative importance (RI) of features analyzed by Garson’s
algorithm.

reported in Table I. It is noteworthy that, neural document clas-
sifiers, which have been widely used in sentiment and topic-
based document classification tasks [19, 39, 45, 36, 44, 16],
fall short of effectively identifying the main-articles from
candidate Wikipedia articles based on only semantic features.
This shows that the summary style of main-articles is invariant
to topics and meanings of the article contents. On the other
hand, the explicit features alone are helpful to the task. The
best statistical classification algorithm (Random Forest) is
able to outperform the best neural document classifier that
is solely based on semantic features (ATT(t,s)+CNN(a)) dras-
tically by 29.07% in F1-score. This indicates that the explicit
features that measure the symbolic and structural aspects of the
Wikipedia articles are critical to distinguish the main-articles.

Meanwhile, combining both latent semantics and explicit
features have significant enhancement on addressing this task,
such that the proposed model variants that combine both
categories of features generally obtain much higher F1 than
the best baseline on Random Forest. For model variants
with different encoding architectures, we notice that those
with hierarchical encoders consistently outperform those with
simpler plain document encoders, such that the best regu-
lar hierarchical model HCNN+F improves the best plain-
encoder-based CNN+F by 2.83% of F1. Models that employ

hybrid encoders offer even better performance, among which
the best performance is achieved in the cases where GRU or
ATT is employed for title and sentence encoding, and CNN is
used for article-level aggregation of sentence representations.
Corresponding model variants GRU(t,s)+CNN(a) + F and
ATT(t,s)+CNN(a)+F achieve near-perfect F1 scores and out-
perform HCNN+F and Random Forest by around 4.2% and
9.6% of F1 respectively, as well as with both notably higher
precision and recall. This indicates that the best article repre-
sentation strategy for this task requires sequence encoders to
capture the sequence information of titles and short sentences,
while the local interactions of adjacent sentences preserved by
the article-level CNN are more important than the sequence of
these sentences. This also explains why the GRU(t,s)+CNN(a)

and ATT(t,s)+CNN(a) without explicit features outperform
the other neural document classifier baselines in group (1)
of Table I. The effect of self-attention mechanism for title
and sentence-level encoders thereof, is relatively marginal. To
summarize, the proposed best model variants have achieved
very promising performance on addressing the main-article
identification problem.

C. Ablation Study of Features
Next, we perform the ablation study on different categories

of features and each individual feature, so as to analyze their
significance to the task. Table II shows the ablation of feature
categories for the best model variant ATT(t,s)+CNN(a) + F .
We have already shown that removing the explicit features
would significantly impair the performance of the model. As
for the two categories of latent semantic features based on
titles and text contents, we find that removing either of them
would noticeably impair the model performance in terms of
recall. The removal of title embeddings thereof cause more
significant drop of performance than that of text content
embeddings.

To understand the relative importance (RI) of each specific
feature, we process Garson’s weight analysis algorithm [28,
13] on the last linear MLP of ATT(t,s)+CNN(a) + F . Fig. 2
shows the RI of the individual features, which is aggregated
from all folds of cross-validation. The number of sections
nsec thereof appear to be the most important feature for
characterizing the main and sub-article types. This is coherent



to the fact that main-articles are typically divided into more
sections for different aspects of the described entities, some of
which are further extended to sub-articles. Besides, the title-
based semantic feature and rtto as well as degree-centrality-
based din and dout also show high RI. This indicates that
titles and link structures have higher significance than other
aspects like text contents and section titles for characterizing
the Wikipedia article in our task. These features also reflect
the fact that, semantically it is easy to determine the article
type based on titles without the text contents of articles, as it is
close to human practice. Also, the main-articles are essentially
characterized by its significance in the hyperlink structure.

V. CONCLUSION

In this paper, we have proposed a deep neural model for
identifying main and sub-article in Wikipedia. The proposed
model employs a wide varieties of document encoders for
titles and text contents to capture the latent semantic features
of Wikipedia articles, which is also incorporated with a set
of explicit features to comprehensively measure the symbolic
and structural aspects of articles. We have prepared a large
dataset for the main-article identification problem via massive
crowdsourcing. Held-out estimation shows that the proposed
model variants significantly outperform existing neural docu-
ment classification models based solely on semantic features,
as well as statistical classification algorithms based on explicit
features. The best model variants which employ hybrid docu-
ment encoders and explicit features are able to achieve near-
perfect performance. Meanwhile, ablation study of features
have analyzed the relative importance of different feature
categories and different individual features for our task.
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