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This statement is for my tenure evaluation in Fall 2025. I was hired as an Assistant Professor step 4 in
November 2023. This statement covers my research-related activities since my PhD in 2019.

1 Research
My research focuses on Natural Language Processing (NLP) and Machine Learning (ML). Since my PhD
in 2019, my research has broadly contributed to the advancement of robustness, generali-zability, and inter-
pretability of NLP models, vision-language models, and AI agents. I have also applied my research outcome to
solve problems in other fields including software engineering, medicine, biology and geo-intelligence. I have
so far published well over 100 papers appear at leading NLP (NAACL, EMNLP, ACL, EACL, TACL), ML
(ICLR, NeurIPS, etc.) venues, and have led to three outstanding/best paper awards (Outstanding Paper Awards
at EMNLP 2024, EMNLP 2023, and the Best Student Paper Award at ACM BCB). According to Google
Scholar, my research has to date received > 8400 citations, > 45 H-index and > 108 i10-index. My work has
so far received close to $2M in research funds from federal agencies and the industry just counting my share,
and $314K in unrestricted gift funds through several faculty research awards. The following are summaries of
my research contributions in the focused directions of my group.

1.1 Safety of LLMs

With the new learning paradigms such as instruction tuning and Reinforcement Learning from Human Feedback
(RLHF), the recent surge of Large Language Models (LLMs) has received wide attention from society. The
most recent LLMs like GPT-4 and R1 shown strong abilities in understanding natural language prompts, and
have exhibited significant potential in supporting decision-making in various kinds of daily-life or even high-
stakes tasks. Despite the success, the increasingly scaled sizes of LLMs, as well as their growing deployments
in systems, services and scientific studies, are bringing along more and more emergent issues in security and
privacy. On the one hand, since LLMs are more potent of memorizing vast amount of information, they can
definitely memorize well any kind of training data that may lead to adverse behaviors, leading to backdoors that
may be leveraged by adversaries to control or hack any high-stake systems that are built on top of the LLMs.
In this context, LLMs may also memorize personal and confidential information that exist in corpora and the
RLHF process, therefore being prone to various privacy risks including membership inference, training data
extraction, and jailbreaking attacks. Hence, unraveling and mitigating emergent backdoor threats is an urgent
and significant problem to be addressed at the time being, and also sits at the core of the White House’s recent
Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence [1].

My recent research has been dedicated to addressing the emergent security and privacy issues of LLMs
from the perspectives of mitigating training-time and test-time threats, and combating privacy concerns in LLM
utility from the following three aspects. (i) Training-time threat mitigation. One significant area of security
concerns for LLMs is their susceptibility during the training phase. Adversaries can exploit this vulnerability
by strategically contaminating a small fraction of the training data and lead to the introduction of backdoors or
a significant degradation in model performance. My recent work has unraveled how attackers may capitalize
on the dedicated development processes of LLMs, injecting tailored examples in instruction tuning [63], align-
ment [58] and conversational tuning [49]. Moving forward, we have developed principled threat mitigation
strategies in three pivotal stages of data preparation [49], training time [32, 19, 56], and inference time [61]. (ii)
Test-time threat mitigation. Due to the limited accessibility of model components in LLMs that are deployed as
services, mitigation of threats are realistically be address through test-time defense or detection. In this context,
my pilot work has unraveled emergent threats that may exist as malicious task instructions, jailbreaking attacks,
adversarial demonstrations, and training-free backdoor attacks [35, 63, 57, 56, 66, 39]. Based on the unraveled
threats, some of our works have contributed with novel technologies to mitigate some of those test-time threats
based on techniques including prompt robustness estimation, demonstration-based defense, test-time alignment
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and reasoning-based guardrails [34, 32, 79, 41, 62, 37]. (iii) Privacy protection. Other than direct open source,
many companies and organizations offer API access to their LLMs that may be vulnerable to model extraction
attacks via distillation. Our work has developed fingerprinting techniques to identify distilled LLMs [64], which
is essential to ensure the copyrighted distribution and adaptation of models among developers and users. In the
context of protecting privilege knowledge in LLMs, our recent work SudoLM [33] presents the first paradigm
for learning access control of knowledge in LLM training. SudoLM allows authorized users to unlock their
access to all the parametric knowledge with an assigned SUDO key while blocking access to non-qualified
users, which particularly ensure the safe utility of LLM services in high-stakes tasks such as healthcare, fintech
and cyber-physical systems.

These works have been recognized with awards and grants including an EMNLP Outstanding Paper Award,
an Amazon Trusted AI Prize and funding support from NSF Proto OKN, DARPA AIE programs and the Ke-
ston Foundation. Many of these contributions have also been instructed as recent tutorials at NAACL 2024
and EMNLP 2024 [12, 67]. I have also co-founded the new ACL Special Interested Group on NLP Security
(SIGSEC) in 2024 to promote the research interactions in this field.

1.2 Robustness, Indirect supervision and Interpretability of NLP Models

my group is also known for their several lines of research in robustness, indirect supervi-sion, and interpretabil-
ity of NLP models.. Specifically, our research systematically leads to transformative advancements in the
following four dimensions.

(1) Indirect supervision. Learning to extract structural knowledge has largely relied on direct supervision
from structurally annotated corpora that are similarly expensive as a structural knowledge representation it-
self [42]. I instead investigate a novel direction of indirect supervision, leading to robust and generalizable
knowledge extraction models without sole reliance on these expensive end-task annotations. In particular, my
study has produced principled approaches for reformulating and transferring supervision signals from natural
language inference (NLI) [27], summarization [36] and linguistic pattern matching [43]. This reformulation
allows rich (indirect) supervision signals to be transferred from well-developed learning resources and models
for signal-providing tasks that align well with knowledge extraction. It also emancipated knowledge extraction
from the limitation of fixed label sets, allowing the inference of new types of knowledge that were unseen
in training. In this context, I have also explored with semantic representation of tasks and labels [23, 14] to
further reduce the need of direct task supervision. This systematic study of indirectly supervised learning has
led to SOTA performance on a large number of benchmarks for relation extraction, named entity recognition,
ultra-fine entity typing, event extraction and event process typing. Specifically, for all those tasks, my systems
have demonstrated excellence in extremely few-shot [36, 23, 5] or zero-shot performances [27] that were close
to those previously offered by full-shot, directly supervised models.

(2) Noise- and perturbation-robustness. In addition to insufficiency of annotated data, the cost and difficulty
of structural annotation often lead to significant training noise. In the same context, real-world application sce-
narios often expose the model with way larger and more diverse data, for which the inference of model needs to
frequently handle perturbations and out-of-distribution (OOD) exceptions. My study accordingly enhance the
robustness of the model from two perspective. Towards robust training, my study developed a co-regularized
knowledge distillation approach that can proactively identifying noisy training instances and preventing the
discriminative model from fitting the noise [74]. This leads to significant improvement in both noise-robustness
and computational efficiency over previous ensemble-based denoising and noise-filtering methods. In this con-
text, my study also proposed sharpness-aware minimization with dynamic reweighting (δ-SAM [77]) to further
enhance the model robustness using adversarial perturbation training, as well as self-supervised cross-lingual
perturbation training [50]. On the other hand, to enhance the robustness in inference, I have studied margin-
based contrastive learning methods [75, 7] that led to near-perfect unsupervised OOD detection performance,
helping the model selectively identify cases where no extraction should be made. I also developed structure-
aware equivariance learning techniques [52, 59] to allow data-to-text generation models to generate consistent
representation for structural priors where semantic-invariant perturbations are free to be introduced. Those
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technologies systematically improves the reliability of knowledge extraction systems in real-world scenarios
where training and inference phases are abundant with noise, perturbations and exceptions.

(3) Logically constrained learning and inference. Extracts are not standalone and can possess complex logi-
cal dependencies. A robust knowledge extraction system needs to ensure that the extracts are self-contained, and
free of inconsistency and redundancy. My work accordingly suggests solutions to this problem with novel con-
strained learning and inference approaches. Specifically, I have studied joint constrained learning approaches
for enforcing logical consistency in relation extraction tasks [53], probabilistic constrained learning with t-norm
based optimization [18], logically constrained learning for linear relational embeddings [10] and probablistic
box embeddings [16]. Considering that logical constraints may be costly to define and hard to articulate, my re-
cent study also proposed the approach to learn linear inequalities for automatically capturing logical constraints
from data [54].

(4) Faithfulness. Current knowledge extraction models are mainly developed on large pre-trained language
models and are short of training annotations in general. In this situation, my study has discovered that pre-
training knowledge, distribution biases or existing annotation artifacts could often cause models to unfaithfully
extract what is described in a given context, but instead to “guess” with a context-irrelevant extract using
prediction shortcuts [60, 65]. Faithfulness, while being an under-explored research area, is undoubtedly a
premise of reliable information extraction. In this context, my study has so far delivered several pilot studies
to mitigate prediction shortcuts in entity-centric and event-centric information extraction with counterfactual
analysis [60, 55], and counterfactual data augmentation [65]. On the other hand, to ensure that models make
selective decisions on exception cases where nothing should be extracted, I contribute with selective prediction
techniques based on high-order metric learning [31, 44] and Dirichlet parameterization [55].

My main contributions in this line of research were summarized in the tutorials I presented at NAACL
2022 [3], ACL 2021 [13] and other invited talks, were recognized with one EMNLP Outstanding Paper Award,
and led to the support I am receiving from DARPA KMASS program, the DARPA MCS program, and Faculty
Research Awards from Amazon and Cisco.

1.3 Transferable Representation Learning for Structural Knowledge

Structural representation learning is the requisite for incorporating symbolic knowledge into deep learning
models. A key contribution I have made to this field is on the transferability of such representations. Different
domains or sources of data, or even different languages, often provide interchangeable and complementary
knowledge. Hence, it is particularly important to develop a universal representation learning method that cap-
tures the association of knowledge across multiple data sources with minimal supervision, and support with
credible knowledge transfer across different domains. I started this line of research and provided the first
embedding framework that bridges multiple language-specific KGs [11, 15], by performing semi-supervised
alignment of multiple relational embedding models. To more precisely capture the knowledge association with
minimal supervision, I have extensively extended the alignment learning process based on iterative co-training
[8], multi-view representation [9, 69], incidental supervision from free text [6], unsupervised visual pivoting
[30] and coarse-to-fine entity linking [20, 22]. I have also devised relational embedding techniques that are
robust against scarcity and structural heterogeneity of data, using techniques based on box embeddings [16],
concept contextualization [46] and attentive neighborhood aggregation [47]. Particularly, for highly complex
knowledge-representation structures, I devised on new paradigms for non-linear embedding spaces [45, 38, 5].
For knowledge transfer from multiple sources of (inconsistent) learning resources, my work addresses the prob-
lem of inducing trustworthy inference results with ensemble knowledge transfer [17, 76]. In this context, my
study also contributes with answer consolidation [78] and multi-modal fact verification techniques [51] that
help resolve the redundancy and inconsistency of local extracts for global knowledge representation.

This line of research has received a wide recognition by the community, and the importance of this contri-
bution has been recognized by over a thousand citations collectively in the past four years. A wide spectrum
of applications have also been benefited from the techniques proposed in my papers and follow-up works. The
advancement in this research topic has been featured in my tutorial at AAAI-2020 [2] and our recent bench-
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marking paper [48], and has been recognized with an NSF CRII Award and one ACM BCB Best Student Paper
Award.

1.4 Future Research Agenda

My lab will continue to investigate on principled approaches for improving reliable development and deploy-
ment of large foundation models that handle natural language and other modalities. One important direction is
to realize access control of parameter knowledge and contextual augmentation leveraged by the LLM, seeking
to control the generation according to the authorized privileges of users like it is being done in an operating
system. Another research direction is to statistically characterize inductive biases represented in online model
hubs, and efficiently identify those at inference for any complex tasks. Moreover, we will continue to broaden
the impact of our research impact in various areas such as computational biology [4, 73, 24], medical informat-
ics [71, 70, 21, 68], coding agents [40, 25, 26, 72, ?] and geo-intelligence [29, 28].

Accountable and interpretable NLP will also continue to be an important research topic in my group. I plan
to further extend the research on this topic in two directions. First, I am interested in machine learning tech-
niques that ensure more faithful decision making. This involves techniques that detect and mitigate spurious
feature shortcuts leveraged by the model, and analyze the learnability of training instances. Following my re-
cent studies on spurious correlation mitigation in information extraction tasks with counterfactual analysis and
augmentation [65, 60], my next steps in this direction will be to investigate end-to-end debiasing techniques that
automatically detect complex prediction shortcuts on the dependency structures and combinations of features.
From the instance-level perspective, I will also study methods that differentiates hard and noisy instances by
characterizing the per-instance training dynamics of the model along the learning curve. The second direction,
leads to equivariance learning in NLP. As an important but largely under-explored component of robust NLP
systems, both the language understanding and generation processes need to identify equivariance properties in
data. For example, the narrative structure of an article can be reorganized, while still presenting the same con-
tent. In constrained NLG tasks with structural priors (e.g. structured data-to-text generation), the structure of
the prior can also be modified while presenting semantically equivalent content. However, existing sequential
modeling of languages cause downstream NLU and NLG systems to be brittle to content-neutral transforma-
tions of input data. Our pilot study realizes equivariance learning by incorporating structured masking and
transformation-invariant position encoding mechanisms in pre-trained Transformer models for data-to-text [52]
and scene-to-text [59] generation tasks. Following this direction, I will investigate principled approaches for
capturing and disentangling invariant features or structures (e.g., narrative structures) of natural language text,
and approaches to composite information from multiple components of text (e.g., sentences, paragraphs, or
documents) while ensuring the equivariance to positional, structural and frequential perturbations. Based on
these approaches, I will also explore whether equivariance learning leads to improved out-of-distribution gen-
eralizability of NLP models.

2 Research Mentoring
During the past five years, I have established the Language Understanding and Knowledge Acquisition (LUKA)
Lab, which has become one of the leading university labs focusing on robustness and safety issues of LLMs
and NLP systems. The lab has so far graduated five PhD students. Three of the PhD graduates join Google
Deepmind as research scientists, one joined Meta as a research scientist, and one joined Oracle as a machine
learning scientist. The lab is currently hosting nine PhD students. In addition, my lab has hosted around 20
successful undergraduate and MS researchers. Eight of the undergraduate students have published as the first
authors at top-tier NLP/AI conferences or journals. These junior mentees have won three Provost’s Fellow-
ship, four CURVE Fellowship, one Hertz Fellowship, and one honorable mention for the CRA Outstanding
Undergraduate Research Award.
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