

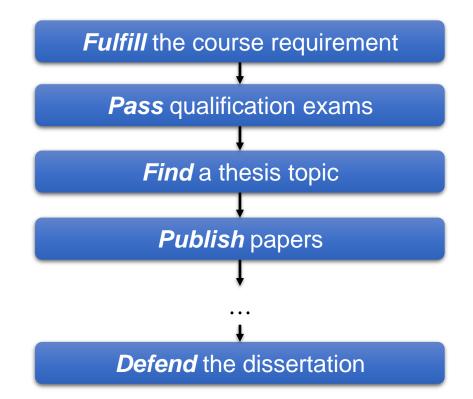
**USC** Viterbi



# "What Are You Trying To Do" Semantic Typing of Event Processes

*Muhao Chen*<sup>1,2</sup>, Hongming Zhang<sup>2</sup>, Haoyu Wang<sup>2</sup> & Dan Roth<sup>2</sup> <sup>1</sup>Information Sciences Institute, USC <sup>2</sup>Department of Computer and Information Science, UPenn

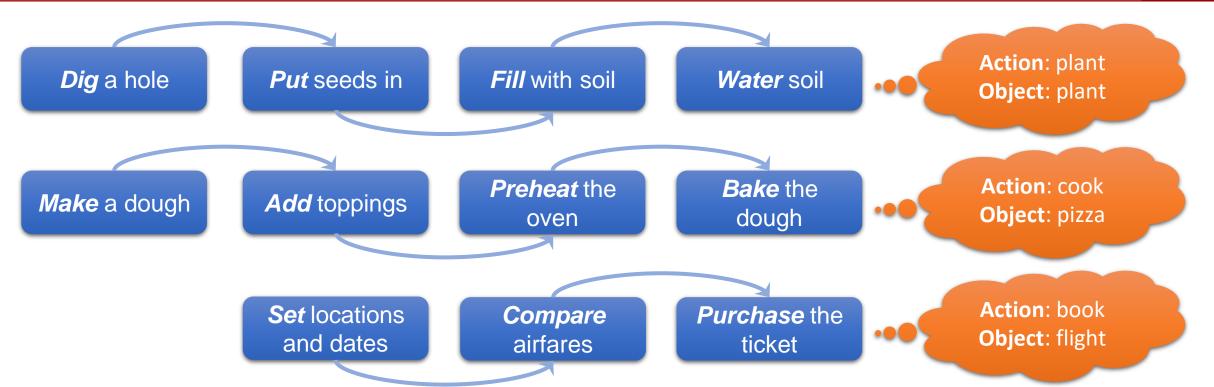
The 24<sup>th</sup> SIGNLL Conference on Computational Natural Language Learning (CoNLL 2020)


11/2020

# **Understanding Event Processes**



Natural language always involves descriptions of event processes.


Earning a PhD in Computer Science typically takes around 5 years. It first involves *fulfilling the course requirements* and *passing qualification exams*. Then within several years, the student is expected to *find a thesis topic*, *publish several papers* about the topic and *present them in conferences*. The last one or two years are often about *completing the dissertation proposal, writing* and *defending the dissertation*.



An event process: a chain of events that happen sequentially.

# **Understanding Event Processes**



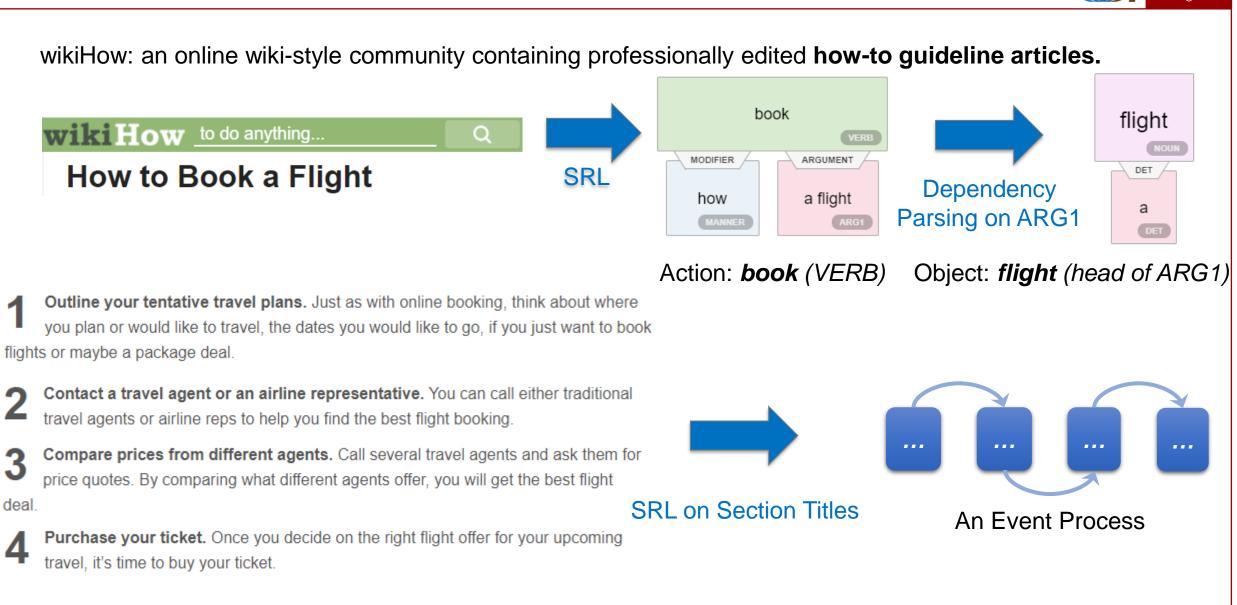


Event processes are directed by the **central goal**, or the **intention** of its performer [Zacks+, Nature Neuroscience 2001].

- Inherent to human's common sense.
- Missing from current computational methods.
- Important to machine commonsense reasoning, summarization, schema induction, etc.



**Three Contributions of This Work** 


A new (cognitively motivated) **semantic typing task** for understanding event processes in natural language. Two **type axes**:

- What action the event process seeks to take? (action type)
- What type of **object**(s) it should affect? (**object type**)

This research also contributes with

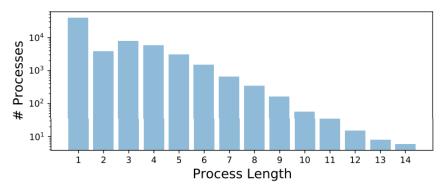
- A large dataset of typed event processes (>60k processes)
- A hybrid learning framework for event process typing based on indirect supervision

# A Large Event Process Typing Dataset



# A Large Event Process Typing Dataset




A large dataset of typed event processes

• 60,277 event processes with free-form labels of action and object types

# A challenging typing system

- Diversity: 1,336 action types and 10,441 object types (in free froms)
- Few-shot cases: 85.9% labels appear less than 10 times, (~half 1-shot).
- External labels: in 91.2% (84.2%) processes, the action (object) type label does not appear in the process body.

A non-trivial learning problem with ultra fine-grained and extremely few-shot labels.



How

Figure 2: Distribution of process lengths.

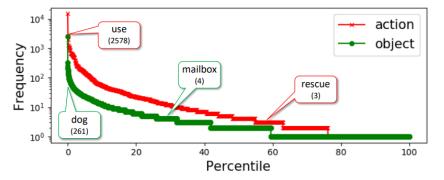
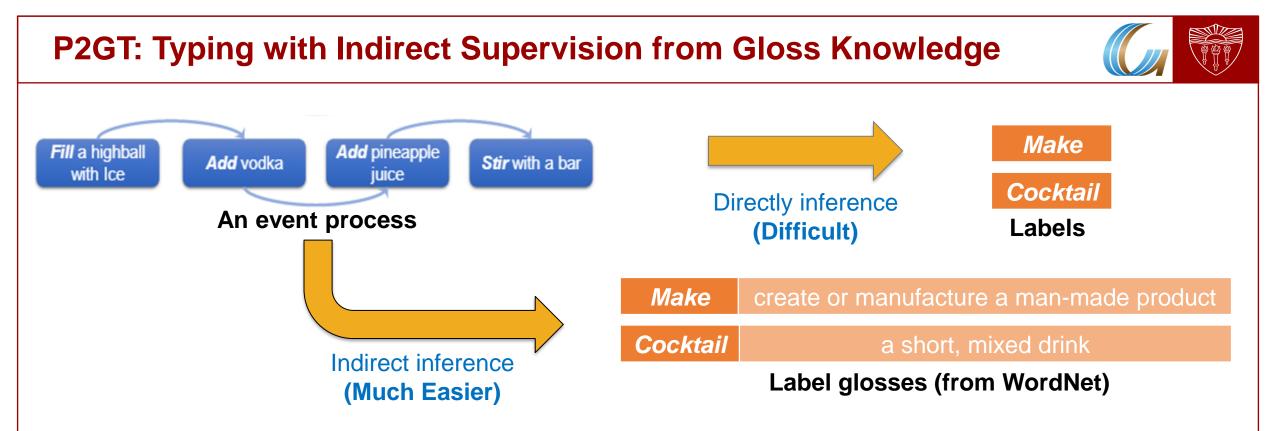
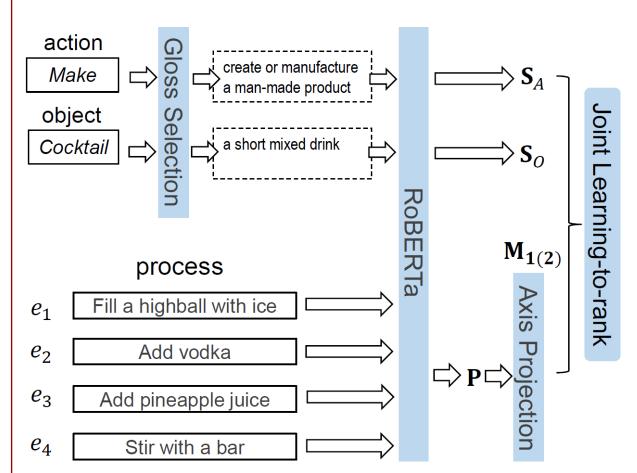




Figure 3: Distribution of actions and objects. Number of frequencies are shown in the brackets.




#### Why using label glosses?

- Semantically richer than labels themselves
- Capturing the association of a process-gloss pair (two sequences) is much easier
- Jump-starting few-shot label representations (and benefiting with fairer prediction)

# **P2GT: Typing with Indirect Supervision from Gloss Knowledge**





#### How to represent the process?

• RoBERTa encodes concatenated event contents (VERB and ARG1).

### How to represent a label?

The same RoBERTa encodes the label gloss

## Which gloss for a polysemous label?

- WSD [Hadiwinoto+, EMNLP-19]
- MFS (Most frequent sense)

# Learning objective?

 Joint learning-to-rank for both type axes (different projection)

# Inference?

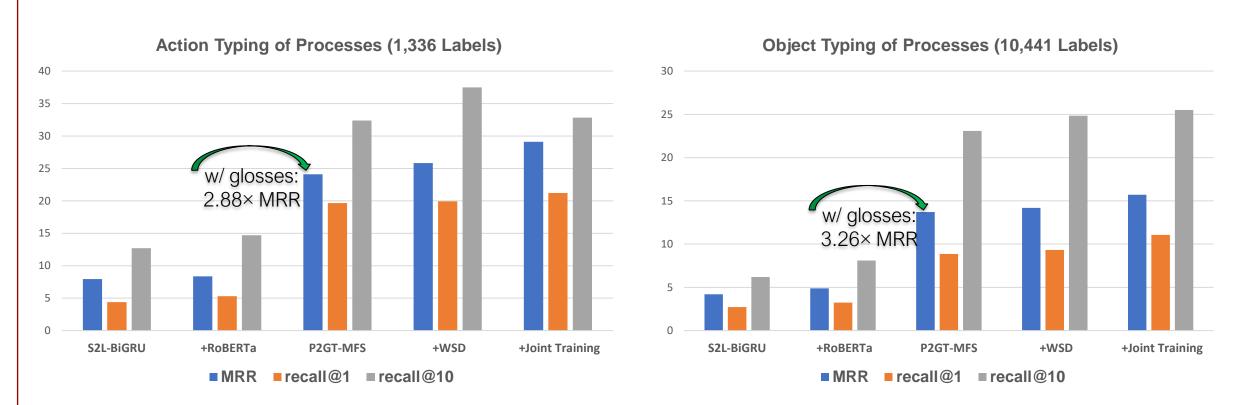
Ranking all glosses for all labels in the vocab



#### **Evaluation protocol**

- 60,277 event processes
- 80/10/10 train/dev/test split

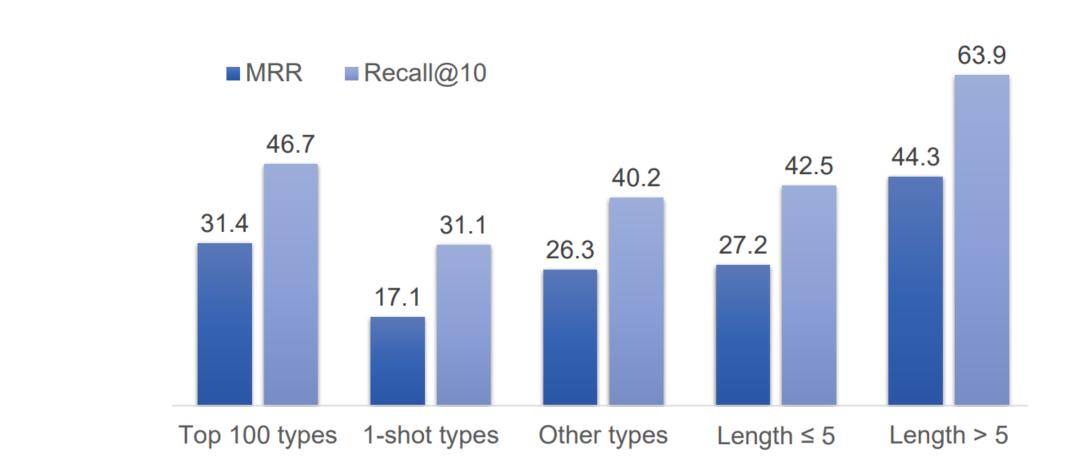
# **Compared methods**


- Sequence to label generators (S2L) [Rashkin+, ACL-18]
  - Different encoders: pooling, BiGRU, RoBERTa
- Variants of P2GT
  - w/ or w/o multi-axis joint training
  - w/ or w/o WSD-based gloss selection
  - Partial information for event representation (VERB only or ARG only)

# **Ranking metrics**

- recall@1, recall@10
- Mean Reciprocal Rank (MRR)

#### **Main Results**






- Gloss knowledge brings along the most improvement (2.88~3.26 folds of MRR)
- Joint training indicates the effectiveness of leveraging complementary supervision signals
- Sense selection (WSD) leads to lesser improvement (predominant senses are representative enough)

#### **Error Analysis**





- Performance is better on more frequent labels (as expected)
- On 1-shot cases, it performs reasonably well
- Longer processes are easier to type (w/ more contextual information of associated events)

#### **Case Study**



| Event processes                                                                                                                  | Predictions                        |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
| Make explosive materials $\Rightarrow$ Obtain a container $\Rightarrow$ Obtain shrapnel $\Rightarrow$ Install a                  | A: detonate, assemble, blacken     |  |
| trigger                                                                                                                          | O: grenade, blaster, mine          |  |
| Go to DMV $\Rightarrow$ Take photos $\Rightarrow$ Take vision test $\Rightarrow$ Take permit test $\Rightarrow$ Take road test   | A: obtain, verify, explore         |  |
| Go to Diviv $\Rightarrow$ Take photos $\Rightarrow$ Take vision test $\Rightarrow$ Take permit test $\Rightarrow$ Take toad test | O: license, check, visa            |  |
| Ignore order $\Rightarrow$ Enter area $\Rightarrow$ Enforce blockade $\Rightarrow$ Force to retreat from area                    | A: conquer, disarm, invade         |  |
|                                                                                                                                  | O: barrier, soldier, fortress      |  |
| Capture two opposition posts $\Rightarrow$ Kill many fighters $\Rightarrow$ Destroy three armed trucks                           | A: kill, demolish, fight           |  |
| $\Rightarrow$ Confiscate artillery guns                                                                                          | O: melee, conflict, stronghold     |  |
| Cooperate with the counsel investigation $\Rightarrow$ Open his remarks $\Rightarrow$ Apologize many                             | A: respond, disagree, accept       |  |
| times $\Rightarrow$ Try to restore public trust                                                                                  | O: apology, disagreement, slander  |  |
| Travel in a presidential motorcade $\Rightarrow$ Be shot once in the back $\Rightarrow$ Be taken to                              | A: survive, die, tackle            |  |
| hospital $\Rightarrow$ Be pronounced dead                                                                                        | O: assassin, crash, roadkill       |  |
| Give advance notice $\Rightarrow$ Give notice $\Rightarrow$ Issue dividends                                                      | A: honor, pay, reward              |  |
| Give advance notice $\Rightarrow$ Give notice $\Rightarrow$ issue dividends                                                      | O: finance, equity, subsidy        |  |
| Target quotes $\Rightarrow$ Target shares quotes $\Rightarrow$ Ask to clarify offer $\Rightarrow$ Challenge to merge             | A: compare, maximize, negotiate    |  |
| agreement $\Rightarrow$ Challenge to merge businesses                                                                            | O: prospectus, quote, settlement   |  |
| Clean windows $\rightarrow$ Ruy plants $\rightarrow$ Hang pictures $\rightarrow$ Doint walls $\rightarrow$ Correct floors        | A: redecorate, decorate, refurbish |  |
| Clean windows $\Rightarrow$ Buy plants $\Rightarrow$ Hang pictures $\Rightarrow$ Paint walls $\Rightarrow$ Carpet floors         | O: room, bedroom, makeover         |  |

Table 3: Case study for typing event processes in the news domain. The predictions are given by Joint P2GT-WSD trained on our full dataset. Each case is given top 3 predictions on both axes, whereof reasonably correct ones are boldfaced, and relevant ones are italic. Few-shot labels appearing up to 10 times in our dataset are in blue.

#### **System Demonstration**



#### A web demonstration of our prototype system is running at http://dickens.seas.upenn.edu:4035/

Examples

Decoration

Event process (choose an example or write the subevents of a process separated by '@' to get its intention)

clean windows @ buy plants @ paint walls @ hang pictures @ carpet floors @ reorganize furniture

Get intention >

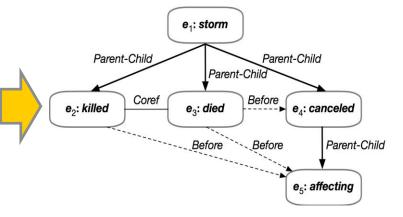
# redecorate room

| Cosine<br>similarity | Action     | Object     | Cosine<br>similarity |
|----------------------|------------|------------|----------------------|
| 0.678                | redecorate | room       | 0.623                |
| 0.650                | stage      | atmosphere | 0.599                |
| 0.500                | brighten   | mosaic     | 0.589                |
| 0.427                | preoccupy  | suite      | 0.574                |
| 0.418                | furnish    | interior   | 0.573                |

#### Conclusion



#### This work provided


- A new (cognitively motivated) task for event understanding, *multi-axis event process typing*, to infer the types of the overall action and affected object(s).
- A large event process dataset with ultra diverse and fine-grained type vocabularies.
- A simple yet effective method of process typing based on indirect supervision from gloss knowledge

#### Meaningful future research

- Identifying salient events in processes
- More downstream applications of commonsense reasoning, summarization and narrative prediction
- Event schema induction and instantiation with the produced language model

#### **Our Parallel Works About Event-centric NLU**

On Tuesday, there was a typhoon-strength  $(e_1:storm)$  in Japan. One man got  $(e_2:killed)$  and thousands of people were left stranded. Police said an 81-year-old man  $(e_3:died)$  in central Toyama when the wind blew over a shed, trapping him underneath. Later this afternoon, with the agency warning of possible tornadoes, Japan Airlines  $(e_4:canceled)$  230 domestic flights,  $(e_5:affecting)$  31,600 passengers.



Haoyu Wang, Muhao Chen, Hongming Zhang, Dan Roth. Joint Constrained Learning for Event-event Relation Extraction. EMNLP 2020



Hongming Zhang, Muhao Chen, Haoyu Wang, Yangqiu Song, Dan Roth. *Analogous Process Structure Induction for Sub-event Sequence Prediction*. **EMNLP** 2020



School of Engineering





# **Thank You**

Muhao Chen. Homepage: <u>https://muhaochen.github.io/</u> Email: <u>muhaoche@usc.edu</u>

11/2020