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Spatiotemporal Data
Time & Space：The inherent attributes of any existing object and event.

Features：
◦ Multi-resolution representation

◦ Different units of measurement

◦ Uncertainty (Vagueness and fuzziness)



Granularity and Granularity System (GS)
•Granularity: divides space / time into granules

•A GS: a partial-order lattice ({G}, ) which manages several granularities with a partial-
order relation (E.g., FinerThan system)

•Two operations on GS: 

• Granularity conversion: convert a granular object to its “equivalence” or another granularity

• Granular comparison: convert two granules to a same granularity and compare them



Granularity Relation

A topological relation between two granularities



Granularity Relations (Spatial/Temporal)
Partial-order relations

Symetric relations

Relation Description Converse

GroupsInto(G,H) Each granule of H is equal to the union of a set of granules of G. GroupedBy (H,G)

FinerThan(G,H) Each granule of G is contained in one granule of H. CoarserThan(H,G)

Partition(G,H) G groups into and is finer than H. PartitionedBy (H,G)

CoveredBy(G,H) Each granule of G is covered by some granules of H. Covers(H,G)

SubGranularity(G,H) For each granule of G, there exists a granule in H with the same 
extent.

Relation Description

Disjoint(G,H) Any granule of G is disjoint with any granule of H. 

Overlap(G,H) Some granules of G and H overlap.



Granularity Relations (Continue)
Partial-order relations

GroupsPeriodicallyInto(G,H) G groups into H. ∃n, m ϵ N where n<m and n<|H|, s.t. iϵN, if                                   
and H(i + n) ≠∅ then                                          . 

GroupsUniformlyInto(G,H) G groups periodically into H, as well as m=1 in the above definition of 
GroupsPeriodicallyInto.
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Why A GS is a Lattice
Compositionality of granularity conversion
Only one partial-order granularity relation is 

used

Correctness of granular comparison 
Existence of GLB (greatest lower bound) for 

any pair of granularities. (E. Camossi 2008)
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Compositionality of conversions in one GS



Coexistence of Multiple Granularity 
Systems
Current works use only one GS to manage data

Lots of scenarios where multiple systems coexists and 
interacts:
◦ Different real-world representation standards

◦ Solar/lunar calendar, history systems

◦ Intl/US metrics

◦ Different hierachical administrative divisions of countries

◦ …

◦ Multiple heterogeneous GSs given respectively in literatures

◦ Integrate spatial/temporal knowledge bases (e.g., Wikidata, GeoNames, TGN, YAGO)



Coexistence of Multiple Granularity 
Systems (Continue)
Heterogeneity in Granularities:
◦ Inter-system granular comparison ✘ (compositionality not ensured)

Heterogeneity in Granularity Relations

◦ Inter-system granular comparison ✘(GLB existence not ensured)

◦ Uncertainty of inter-system granular conversion ! (incongruous geom. 
properties)



Problems We Solve
•Combine multiple heterogeneous GSs

•Extend granularity conversion and granular comparison among 
systems with correctness

•Model the uncertainty in inter-system conversion/comparison

•Reduce the expected uncertainty



Combining Multiple Systems
•Multiple lattices => one lattice

•Why?
• Inter-system conversions ⇔ like in a single system

• Inter-system granular comparison

•Facilitate in solving the uncertainty problem later



Compositionality
Property 3.2 (Compositionality): 
Given a linking relation , if 
GHI, then 
ConvH→G(ConvI→H(I’))= 
ConvI→G(I’)

Does not necessarily hold across 
heterogeneous systems!
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Inter-system Conversion
•Semantic inconsistency 
and semantic loss

->conversion is 
nondeterministic, or even 
invalid!

We need to find the 
conditions where 
compositionality holds 
across systems.
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An Inference System for Granularity 
Relations
GroupsInto(G,H)⊦Overlap (G,H) GroupedBy(G,H)⊦Overlap(G,H)

FinerThan(G,H)⊦CoveredBy(G,H) CoarserThan(G,H)⊦Covers(G,H)

CoveredBy(G,H)⊦Overlap(G,H) Covers(G,H)⊦Overlap(G,H)

SubGranularity(G,H) ⊦CoveredBy(G,H)

Partition(G,H)⊦FinerThan(G,H)∧GroupsInto(G,H)

PartitionedBy(G,H)⊦CoarserThan(G,H)∧GroupedBy(G,H)

FinerThan(G,H)∧GroupsInto(G,H)⊦Partition(G,H)

Disjoint(G,H)⊦￢Overlap(G,H) Overlap(G,H)⊦￢Disjoint(G,H)

GroupsPeriodicallyInto(G,H)⊦GroupsInto(G,H)

GroupsUniformlyInto(G,H)⊦GroupsPeriodicallyInto(G,H)



Two Semantic Constraints on Inter-system 
Conversion
Definition 4.1 (Semantic Preservation): Let G1..Gn be n (n>2) granularities, and 
k be the linking relations s.t. ∀kϵ[1,n-1], GkkGk+1. Let G’ be a subgranularity of 
G1, the composed conversion from G1 to Gn is semantic preserved if Convn-

1
G1→…→Gn (G’)1=ConvG1→Gn(G’)1. 

The semantics of the first atom conversion is preserved. 

Definition 4.2 (Semantic Consistency): Let G1..Gn be n (n>2) granularities, and 
k be the linking relations s.t. ∀kϵ[1,n-1], GkkGk+1. Let G’ be a subgranularity of 
G1, the composed conversion from G1 to Gn is semantic consistent if ∃jϵ[1,n-1] s.t.
Convn-1

G1→…→Gn(G’)j=ConvG1→Gn(G’)j.

The uniform semantics is given by at least one atom conversion. 



Compositionality Holds for both SPC & SCC
Property 4.1 (Semantic Preserved Compositionality): Given two 
linking relations, *. Given granularities G,H,I s.t. GH’I, then 
ConvH→G(ConvI→H (I’)*,G)=Conv I→G(I’)* iff →*.

The conversion semantics on a path increases monotonously.

Property 4.2 (Semantic Consistent Compositionality): Given two 
linking relations, *. Given granularities G,H,I s.t. GH*I, composed 
conversion from I to G is semantic consistent iff any of =*, →*

or*→ holds.

It exists an atom conversion whose semantics is the weakest



Combinability: Can we combine two GSs?
Definition 4.3 (Combinability): Two granularity systems can be combined to a 
single system iff

1. Any refine-conversion in the combined system is semantic preserved and/or 
semantic consistent.

2. For any pair of granularities, the GLB exists in the combined system.

Req. 1: The S-N condition for supporting inter-system granularity conversions.

Req. 2: The S-N condition for granular comparison. 



How to verify combinability?
• Semantic Preserved Combinability

• GLB always exists + conversion is semantic preserved

• Semantic Consistent Combinability
• GLB always exists + conversion is semantic consistant

• We proved the sufficient-necessary (S-N) 
conditions for both combinabities
• Based on the relations between zero elements and 

granularity relations in involved GSs

• O(1) space and time complexity
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Combination Algorithms (see paper for 
details)
Two types of combination:
◦ Semantic preserved combination (SPC)

◦ Semantic consistent combination (SCC)

◦ Verification + combination: O(n3) time complexity 

◦ O(| ℰD|*|{G}|2)
◦ |ℰD|: # systems on domain D

◦ |{G}|: # granularities in each system



SPC Results
1. Result is still a lattice

2. Any path within the combined 
graph is semantic preserved

3. Any pair of granularities has a GLB

4. Edges are only created for atom 
relation (transitivity reduction)

•A similar SCCombine can be created 
for semantic consistent combination
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Uncertainty Of Granularity Conversion
Uncertainty in granularity conversion that are not considered before: 

geometric distortion results from the incongruity of geometric 
properties among granularity relations 

statistic distortion results from the loss of data among granularities



Quantifying Uncertainty
Geometric precision: 

Statistic precision:
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Properties of Uncertainty Quantification
Property 5.1 (Transitivity): Given 
G,H,I s.t. GHI, 
U(I,H)·U(H,G)=U(I,G) and 
Uρ(I,H)·Uρ(H,G)=Uρ(I,G) are always 
satisfied.
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Property 5.2 (Path-independence): 
Given G,H,H’,I, s.t. GHI, GH’I and 
H≠H’. U(I,H)·U(H,G)=U(I,H’)·U(H’,G) and 
Uρ(I,H)·Uρ(H,G)=Uρ(I, H’)·Uρ (H’,G) always 
hold.

Applies to any 
conversion denoted 
by the directed paths 
in a combined 
granularity graph.



The Optimal Lower Bound Problem
To compare g ⊆ G and h ⊆ H, find 
the GLB with the highest expectation 
of precision. (i.e. (U(G, I)·U(H,I))1/2

is maximal.)

Reduce the Optimal Lower bound 
problem to the LCA problem on 
weighted DAG

O(n) solution (O(|{G}|))
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The Optimal Common Refined Granularity 
(OCRG) Problem
Algorithm 5.1 FindOCRG(u,v)
1: let w[] be the cumulative gain on vertexes 
initialized as 0
2: DFSCumulate(u,w)
3: orcg⟵NIL
4: maxGain⟵0
5: DFSFind(v,e,ocrg,maxGain)
6: return (ocrg,maxGain)

Algorithm 5.2 DFSCumulate(u,w[])

1: if succ(v)=∅ then return
2: for each vϵsucc(u) do
3: if w[v]=0 then
4: w[v]⟵w[v]·W(E(u,v))
5: DFSCumulate(v,w)

Algorithm 5.3 DFSFind(v,w[],ocrg,maxGain)

1: for each uϵsucc(v) do
2: if w[u]=0 then
3: w[u]⟵w[v]·W(E(v,u))
4: DFSFind(u,w,ocrg,maxW)
5: else totalGain⟵w[u]·w[v]
6: if totalGain>maxGain then
7: ocrg⟵u
8: maxGain⟵totalGain



Remaining Discussion of the Paper
Optimization techniques:

•Using Registration Matrix to reduce the verification of granularity relations from O(n2) to O(1)

•Creating indices to reduce the operation of atomic conversion from O(n) to O(1)

How our method may be applied to real-world applications:

•Unified spatio-temporal analysis

•Creating indices to reduce the operation of atomic conversion from O(n) to O(1)
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Thank You!


