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Understanding Relations Is Prominent In Practice
QA and Semantic Search
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Knowledge Graphs: Precise But Expensive Knowledge Representation
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Obtaining the structural knowledge
 Is expensive (Avg $5.71 per triple [Paulheim+, ISWC-18] in open domain; higher cost in

scientific domains).

« Has relied on massive human efforts.
» Has never been close to complete.



Knowledge Is Not Isolated

Different knowledge graphs can possess complementary knowledge
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Entity Alignment
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Problem definition

« Given two (multilingual) KGs, identifying the same entity across them
Why important?

 Allows knowledge to be combined and synchronized in different KGs
» Helps with identifying trustworthy facts in K(Es



Previous methods rely on (costly) direct supervision that is internal to KGs®
« Seed alignment labels
 Entity profiles: entity descriptions, attributes, etc.

This work leverages (cheap) incidental supervision from external free text
« Connecting entities with any available mentions in free text

» Contextual similarity and induced lexical alignment serve as indirect supervision for entity
alignment

» Without the need of any additional labeled data

">30 methods have been summarized in a recent survey: Sun, et al. A Benchmarking Study
of Embedding-based Entity Alignment for Knowledge Graphs. PVLDB, vol. 13, ACM, 2020.



Incidental Supervision From Free Text
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Three steps

1. (Noisy) grounding: connecting KGs and text corpora

2. Embedding learning: embedding lexemes based on structures and text
3. Alignment induction: self-learning for both entity and lexical alignment



Noisy Grounding

Combining two modalities of the same language i o AR
 KG and Free text

----ﬁ

Two choices of techniques (without additional training

labels) TRy CU TR ]
» Off-the-shelf EDL models [Khashabi+ 2018]: NER + _
entity linking Grouning

« Surface form matching: longest prefix matching with a

Completion Trie [Hsu+ 2013] l E
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High recall and noise-tolerant grounding



Embedding Learning

Jointly training two model components
Sf =S +S]

KG Embedding
 [-layers of GCNs

« Atranslational learning-to-rank model
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Text Embedding

« A Skip-Gram language model
exp(d(x,xc))
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Embedding based on both structural and
textual contexts
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Alignment Induction

Iteratively inducing alignment
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In each iteration
« Obtaining the closed-form Procrustes solution
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* Propose new alignment pairs that are mutual (Noisy) Incidental (Noisy)
nearest neighbors (NN) Grounding Supervision Grounding
« Continue until no mutual NNs are found E
G
Induced

Lexical Alignment
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supervision signals for entity alignment



Datasets

« DBP15k: alignment between KGs of 4 languages (EN, FR, JA, ZH); ~30% seed alignment in
training

« WKa3I: alignment between KGs of 3 languages (DE, EN, FR); ~ 20% seed alignment in training

Metrics
« Ranking metrics including MRR, Hits@k (k=1, 10)

Baselines
» 10 supervised methods (AliNet [Sun+ 2020] is the best performing one)

« 3 based on auxiliary information (HMAN [Yang+ 2019] is the best performing one with entity
descriptions)

* 5 semi-supervised methods (BootEA [Sun+ 2018] is the representative method, and NAEA
[Zhu+ 2019] is the best performing one)



Experiments
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Observations are consistent on all experimental settings
* Incidental supervision from free text effectively improve entity alignment on KGs

» Using pre-trained EDL or simple surface form matching (SFM) as grounding does not
affect much the performance



Ablation Study
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« Self-learning brings the most contribution
« Structural information from KGs is important
« Text information is a good addition



Contributions of this work
* An incidentally supervised method for entity alignment on KGs

 Instead of using (expensive) direct supervision from internal information of KGs, this work
retrieves (cheap) supervision signals from external, unlabeled text

* New SOTA on benchmarks

Future directions
» Low-resource language KG construction and verification
» Application to low-resource scientific domains, e.g. pharmacy and genomics
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