

School of Engineering

Cross-lingual Entity Alignment with Incidental Supervision

Muhao Chen^{1,2}, Weijia Shi³, Ben Zhou², Dan Roth² ¹Viterbi School of Engineering, USC ²Department of Computer and Information Science, UPenn ³Department of Computer Science, UCLA

The 16th Conference of the European Chapter of the Association for Computational Linguistics (EACL)

14/2021

Understanding Relations Is Prominent In Practice QA and Semantic Search

Google	mazda car that won 24 Hours of Le Mans						୍	
	Q AII	🖬 Images	🗉 News	🔗 Shopping	▶ Videos	: More	Settings	Tools
	About 34,600,000 results (1.04 seconds)							
	787	В						
						176 1	Sectored as an	

(?car, *produced by*, Mazda) (?car, *won*, 24 Hours of Le Mans)

Knowledge Graphs: Precise But Expensive Knowledge Representation

Obtaining the structural knowledge

- Is expensive (Avg \$5.71 per triple [Paulheim+, ISWC-18] in open domain; higher cost in scientific domains).
- Has relied on massive human efforts.
- · Has never been close to complete.

Knowledge Is Not Isolated

Different knowledge graphs can possess complementary knowledge

DBpedia Novel

<u>・</u>デビペディア

(The Tale of Genji, Genre, ?e)

Monogatari (story) Love story Royal family story Realistic novel Ancient literature

Entity Alignment

Problem definition

• Given two (multilingual) KGs, identifying the same entity across them

Why important?

- Allows knowledge to be combined and synchronized in different KGs
- Helps with identifying trustworthy facts in KGs

What's New in This Work

Previous methods rely on (costly) direct supervision that is internal to KGs^{*}

- Seed alignment labels
- Entity profiles: entity descriptions, attributes, etc.

This work leverages (cheap) incidental supervision from external free text

- Connecting entities with any available mentions in free text
- Contextual similarity and induced lexical alignment serve as indirect supervision for entity alignment
- Without the need of any additional labeled data

*>30 methods have been summarized in a recent survey: Sun, et al. A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphs. **PVLDB**, vol. 13, ACM, 2020.

Incidental Supervision From Free Text

Three steps

- 1. (Noisy) grounding: connecting KGs and text corpora
- 2. Embedding learning: embedding lexemes based on structures and text
- 3. Alignment induction: self-learning for both entity and lexical alignment

Noisy Grounding

Combining two modalities of the same language

• KG and Free text

Two choices of techniques (without additional training labels)

- Off-the-shelf EDL models [Khashabi+ 2018]: NER + entity linking
- Surface form matching: longest prefix matching with a Completion Trie [Hsu+ 2013]

High recall and noise-tolerant grounding

Embedding Learning

Jointly training two model components $S_L^E = S_L^K + S_L^T$

KG Embedding

- *l*-layers of GCNs
- A translational learning-to-rank model $S_{L}^{K} = -\sum_{T \in G_{L}} \log \frac{\exp(b - |\mathbf{h} + \mathbf{r} - \mathbf{t}|)}{\sum_{\hat{T} \notin G_{L}} \exp(b - |\hat{\mathbf{h}} + \hat{\mathbf{r}} - \hat{\mathbf{t}}|)}$

Text Embedding

• A Skip-Gram language model

 $S_L^T = -\sum_{x \in E_L \cup W_L} \sum_{x_c \in C_{x,D_L}} \log \frac{\exp(d(x, x_c))}{\sum_{x_n} \exp(d(x, x_n))}$

Embedding based on both structural and textual contexts

Text Corpus of L₁

Alignment Induction

Iteratively inducing alignment

In each iteration

• Obtaining the closed-form Procrustes solution $\sum_{i=1}^{n}$

 $S_{L_i,L_j}^A = \sum_{(x_i,x_j)\in I(L_i,L_j)} \left| \boldsymbol{M}_{ij} \boldsymbol{x}_i - \boldsymbol{x}_j \right|_2$

- Propose new alignment pairs that are mutual nearest neighbors (NN)
- Continue until no mutual NNs are found

Lexical alignment serves as incidental supervision signals for entity alignment

Datasets

- DBP15k: alignment between KGs of 4 languages (EN, FR, JA, ZH); ~30% seed alignment in training
- WK3I: alignment between KGs of 3 languages (DE, EN, FR); ~ 20% seed alignment in training

Metrics

• Ranking metrics including MRR, Hits@k (k=1, 10)

Baselines

- 10 supervised methods (AliNet [Sun+ 2020] is the best performing one)
- 3 based on auxiliary information (HMAN [Yang+ 2019] is the best performing one with entity descriptions)
- 5 semi-supervised methods (BootEA [Sun+ 2018] is the representative method, and NAEA [Zhu+ 2019] is the best performing one)

Experiments

Performance on DBP15k (En-Fr)

Observations are consistent on all experimental settings

- Incidental supervision from free text effectively improve entity alignment on KGs
- Using pre-trained EDL or simple surface form matching (SFM) as grounding does not affect much the performance

Ablation Study

Ablation Study on DBP15k (EN-FR)

Hits@1 MRR

- Self-learning brings the most contribution
- Structural information from KGs is important
- Text information is a good addition

Conclusion

Contributions of this work

- An incidentally supervised method for entity alignment on KGs
- Instead of using (expensive) direct supervision from internal information of KGs, this work retrieves (cheap) supervision signals from external, unlabeled text
- New SOTA on benchmarks

Future directions

- Low-resource language KG construction and verification
- Application to low-resource scientific domains, e.g. pharmacy and genomics

References in the Slides

- 1. Paulheim, et al. How Much is a Triple? ISWC 2018
- 2. Khashabi, et al. Cogcompnlp: Your swiss army knife for nlp. LREC 2018
- 3. Hsu and Ottaviano. Space-efficient data structures for top-k completion. WWW 2013
- 4. Sun, et al. A benchmarking study of embedding-based entity alignment for knowledge graphs. PVLDB 2020
- 5. Sun, et al. Knowledge graph alignment network with gated multi-hop neighborhood aggregation. AAAI 2020
- 6. Zhu, et al. Neighborhood-aware attentional representation for multilingual knowledge graphs. IJCAI 2019
- 7. Yang, et al. Aligning cross-lingual entities with multi-aspect information. EMNLP-IJCNLP 2019

School of Engineering

Thank You

Muhao Chen. Homepage: <u>https://muhaochen.github.io/</u> Email: <u>muhaoche@usc.edu</u>

4/2021