

Neural Article Pair Modeling for Wikipedia Sub-article Matching

Muhao Chen¹, Changping Meng², Gang Huang³, and Carlo Zaniolo¹ ¹University of California, Los Angeles ²Purdue University, West Lafayette ³Google, Mountain View

Outline

- Background
- Modeling
- Experimental Evaluation
- Future Work

Wikipedia: the source of knowledge for people and computing research

- **Essential sources of knowledge for** people
- 45,567,563 encyclopedia articles
- 34,248,801 users ۲
- (As of 21 August 2018)

English	Español		
The Free Encyclopedia	La enciclopedia libre		
5 010 000+ articles	1 212 000+ artículos		
Русский Свободная энциклопедия	Deutsch Die freie Enzyklopädie		
1 267 000+ crareй 日本語 フリー百科事典 991 000+ 記事	W 9 Français L'encyclopédie lib. 1 696 000+ articles		
Italiano L'enciclopedia libera 1 235 000+ voci	中文 自由的百科全書 847 000+ 條目		
Português	Polski		
A enciclopédia livre	Wolna encyklopedia		
894 000+ artigos	1 143 000+ hasel		
English	٩		

WIKIPEDIA

Countless knowledge driven technologies

- Knowledge bases
- Semantic Analysis
- Semantic search
- **Open-domain question** answering
- Named Entity Recognition
- etc.

Article-as-concept Assumption

1-to-1 Mapping between entities and Wikipedia articles

Wikipedia-based computing technologies that rely on this assumption:

- Automated knowledge base construction
- Semantic search of entities
- Explicit and implicit semantic representations
- Cross-lingual Knowledge alignment
- etc.

Recent Editing Trends of Wikipedia

• Splitting different aspects of an entity into multiple articles.

Main-article summarizes an entity. *Sub-article* comprehensively describes an aspect or a subtopic of the main-article.

Violation of *Article-as-concept* Causes Problems to Existing Technologies

- Automated knowledge base construction: infoboxes and links are separated to multiple pages.
- Cross-lingual knowledge alignment and Wikification: one-to-one match does not hold.
- Semantic search: descriptions of entities are diffused
- Semantic representations: affected by the above

We need to restore the scattered Wikipedia back

Problem Definition of Sub-article Matching

• Input: A pair of Wikipedia pages (A_i, A_i) (text contents, titles and links)

- Target: identify if A_i is the Sub-article of A_i
- Criteria of the sub-article relations:
 - 1. A_i describes an aspect or a subtopic of A_i
 - 2. The text content of A_j can be inserted as a section of A_i without breaking the topic of A_i

The sub-article relation conforms **anti-symmetry**.

Our Approach

- A deep neural document pair model that incorporates
 - 1. Latent semantic features of articles and titles
 - 2. Comprehensive explicit features that measure the symbolic and structural aspects of article pairs
- Obtains near-perfect performance on contributed data
- + A scalable solution to extract high-quality M-S matching with thousand-machine MapReduce from the entire English Wikipedia.
- + A large contributed dataset of 196k English Wikipedia article pairs for this task

Overall Learning Architecture

• Learning Objective: minimizes the binary cross-entropy loss $L = -\frac{1}{|P|} \sum_{p \in P} \left(l^+ \log s_p^+ + l^- \log s_p^- \right)$

Neural Document Encoders

- Three types of neural document encoders
 - 1. CNN+Dynamic MaxPooling
 - 2. GRU
 - 3. GRU+Self-attention

Note: document encoders only reads the first paragraph of a Wikipedia article.

• Word embedding layer: entity-annotated SkipGram

Explicit Features

		_	
r _{tto}	Token overlap ratio of titles.		
r _{st}	Maximum token overlap ratios of section titles.		
r _{indeg}	Relative in-degree centrality.	Based on [Lin et al. 2017	
r _{mt}	Article template token overlap ratio.		
$f_{\rm TF}$	Normalized term frequency of A _i title in A _i text content.		
d _{MW}	Milne-Witten Index.		
<i>r_{outdeg}</i>	Relative out-degree centrality.		
d _{te}	Average embedding distance of title tokens.	– Additional	
r _{dt}	Token overlap ratios of text contents.		
		4	

- 1. Symbolic similarity measures: $r_{tto} r_{st} r_{mt} f_{TF} r_{dt}$
- 2. Structural measures: $r_{indeg} r_{outdeg} d_{MW}$
- 3. Semantic measure: d_{te}

WAP196k—A Large Corpus of Main and Sub-article Pairs

1. Candidate subarticle selection 2. crov

2. Massive crowdsourcing

3. Negative cases generation

Articles like *German Army* or *Fictional Universe of Harry Potter*:

 Article titles that concatenate two Wikipedia entity names directly or with a proposition Annotators decide whether candidates from 1 are subarticles. If so, find the <u>corre</u>sponding main-articles.

 Candidate article pairs (positive and some negative matches) are selected based on total agreement. Three rule patterns:

- 1. Invert positive matches.
- 2. Pair two sub-articles of the same main-article
- 3. Randomly corrupt the mainarticle of a positive match with an adjacent article.

Table 1: Statistics of the dataset.

#Article pairs	#Positive cases	#Negative cases	#Main-articles	#Distinct articles
195,960	17,349	178,611	5,012	32,487

1:10 positive to negative cases

Experimental Evaluation

- Task 1: 10-fold cross validation
 - Metrics: *Precision, Recall* and *F1* for identifying **positive cases**
- Baselines and model variants
 - Statistical classification algorithms based on explicit features: Logistic Regression, NBC, LinearSVM, DecisionTree, Adaboost+DT, Random Forest, kNN. [Lin et al. 2017]
 - 2. Neural document pair models with latent semantics only (CNN, GRU, AGRU)
 - 3. Neural document pair models with latent semantics + Explicit feature (CNN+F, GRU+F, AGRU+F)

10-fold Cross Validation Results

Model	Explicit Features						
	Logistic	NBC	Adaboost	LinearSVM	DT	RF	kNN
Precision (%)	82.64	61.78	87.14	82.79	87.17	89.22	65.80
Recall (%)	88.41	87.75	85.40	89.56	84.53	84.49	78.66
F1-score	0.854	0.680	0.863	0.860	0.858	0.868	0.717
Model	Semantic Features		Model	Explicit+Semantic			
	CNN	GRU	AGRU	WIGGET	CNN+F	GRU+F	AGRU+F
Precision (%)	95.83	95.76	93.98	Precision (%)	99.13	98.60	97.58
Recall (%)	90.46	87.24	86.47	Recall (%)	98.06	88.47	86.80
F1-score	0.931	0.913	0.901	F1-score	0.986	0.926	0.919

- Semantic features are more effective than explicit features
- Incorporating both feature types reaches near-perfect performance

Feature Ablation Analysis

Table 3: Ablation on feature categories for CNN+F.

Features	Precisior	n Recall	F1-score
All features	99.13	98.06	0.986
No titles	98.03	85.96	0.916
No text contents	98.55	95.78	0.972
No explicit	95.83	90.46	0.931
Explicit only	82.64	88.41	0.854

Titles are then most important features (close to the practice of human cognition)

Topological measures are relatively less important

Fig. 3: Relative importance (RI) of features analyzed by Garson's algorithm. RI of each feature is aggregated from all folds of cross-validation.

Experimental Evaluation

- Task 2: large-scale sub-article relation mining from the entire English Wikipedia
- Model: CNN+*F* trained on the full WAP196k
- Candidate space: **108 million** ordered article pairs linked with at least one inline hyperlink
- Workload: ~ 9 hours with a 3,000-machine MapReduce

Extraction Results

- ~85.7% *Precision*@200k
- Avg 4.9 sub-articles per main-article

• Sub-article matching and Google Knowledge Graph

Table 4: Examples of recognized main and sub-article matches. The italicize sub-article titles are without overlapping tokens with the main article titles.

Main Article	Sub-articles
Outline of government	Bicameralism, Capitalism, Dictatorship, Confederation, Oligarchy, Sovereign state
Computer	Computer for operations with functions, Glossary of computer hardware terms, Computer
	user, Timeline of numerical analysis after 1945, Stored-program computer, Ternary computer
Hebrew alphabet	Romanization of Hebrew
Recycling by material	Drug recycling, Copper, Aluminium, Drug recycling
Chinese Americans	History of Chinese Americans in Dallas-Fort Worth, History of Chinese Americans in San
Chinese Americans	Francisco, Anti-Chinese Violence in Washington
Genetics	Modification (Genetics), Theoretical and Applied Genetics, Encyclopedia of Genetics
	Economy of San Marino, San Marino national football team, Democratic Convention (San
San Marino	Marino), Banca di San Marino, Healthcare in San Marino, Flag of San Marino, Geography of
	San Marino
Service Rifle	United States Marine Corps Squad Advanced Marksman Rifle, United States Army Squad
	Designated Marksman Rifle
	LGBT rights in Panama, LGBT rights in the United Arab Emirates, Transgender rights in
Transgender rights	Argentina, History of transgender people in the United States, Transgender disenfranchisement
	in the United States
Spectrin	Spectrin Repeat
Geography	Political Geography, Urban geography, Visual geography, Colorado Model Content Standards
Nuclear Explosion	Outline of Nuclear Technology, International Day Against Nuclear Tests
Gay	LGBT Rights by Country or Territory, Philadelphia Gay News, Troll (gay slang), Gay literature
FIBA Hall of Fame	Šarūnas Marčiulionis
Arve Isdal	March of the Norse, Between Two Worlds
Independent politician	Balasore (Odisha Vidhan Sabha Constituency)
Mathematics	Hierarchy (mathematics), Principle part, Mathematics and Mechanics of Complex Systems,
	Nemytskii operator, Spinors in three dimensions, Continuous functional calculus, Quadrature,
	Table of mathematical symbols by introduction date, <i>Hasse invariant of an algebra</i> , Concrete
	Mathematics
Homosexuality	LGBT rights in Luxembourg, List of Christian denominational positions on homosexuality
Bishop	Roman Catholic Diocese of Purnea, Roman Catholic Diocese of Luoyang
Lie algebra	Radical of a Lie algebra, Restricted Lie algebra, Adjoint representation, Lie Group

Future Work

- Document classification
 - 1. Learning to differentiate main and sub-articles
 - 2. Learning to differentiate sub-articles that describe refined entities and those that describe abstract sub-concepts
- Extending the proposed model to populate the incomplete cross-lingual alignment

References

- 1. Lin, Y., Yu, B., Hall, A., & Hecht, B. Problematizing and Addressing the Article-as-Concept Assumption in Wikipedia. In *CSCW*. ACM 2017
- 2. Chen, M., Tian, Y., etal.: Multilingual knowledge graphembeddings for cross-lingual knowledge alignment. In: IJCAI (2017)
- 3. Chen, M., Tian, Y., et al.: Co-training embeddings of knowledge graphs and entity descriptions for crosslingual entity alignment. In: IJCAI (2018)
- Chen, M., Tian, Y., et al.: On2vec: Embedding-based relation prediction for ontology population. In: SDM (2018)
- 5. Dhingra, B., Liu, H., et al.: Gated-attention readers for text comprehension. In: ACL (2017)
- 6. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP (2014)
- Jozefowicz, R., Zaremba, W., et al.: An empirical exploration of recurrent network architectures. In: ICML (2015)
- 8. Milne, D., Witten, I.H.: Learning to link with wikipedia. In: CIKM (2008)
- 9. Strube, M., Ponzetto, S.P.: Wikirelate! computing semantic relatedness using wikipedia. In: AAAI (2006)
- 10. Gabrilovich, Evgeniy, and Shaul Markovitch. "Computing semantic relatedness using wikipedia-based explicit semantic analysis." *IJCAI*. (2007)
- 11. Chen, Danqi, et al. "Reading Wikipedia to Answer Open-Domain Questions." ACL. (2017)

Thank You