Knowledge Acquisition with Transferable Representation Learning

Muhao Chen University of Southern California http://muhaochen.github.io

Understanding Relations Is Prominent In Practice QA and Semantic Search

Google	mazda car that won 24 Hours of Le Mans	! Q		
	🔍 All 🖾 Images 🖽 News 🔗 Shopping 🕞 Videos 🗄 More	Settings Tools		
	About 34,600,000 results (1.04 seconds)			
	787B			

(?car, *produced by*, Mazda) (?car, *won*, 24 Hours of Le Mans)

Understanding Relations Is Prominent In Practice

Recommender Systems

Computational Biology Research

- Co-purchase relations of products
- Social relations of users

• Interactions of molecules and biomolecules.

Understanding Relations Is Prominent In Practice

sing in the second seco

- QA
- Discourse relation detection
- Dialogue state tracking
- Event prediction
- Narrative cloze
- Entity/event typing and linking

- Semantic search
- Relational rule mining
- Ontology population
- Ontology matching and knowledge integration

- Interaction prediction of biomolecules
- Mutation effect estimation
- Non-coding RNA alignment
- Drug discovery
- Polypharmacy side effect detection

Multi-relational Data

Multi-relational Data: Precise But **Expensive** Knowledge Representation

Obtaining the structural knowledge

- Is expensive (Avg \$5.71 per triple [Paulheim+, ISWC-18] in open domain; higher cost in scientific domains).
- Has relied on massive human efforts.
- Has never been close to complete.

Representation Learning: Cheap Knowledge Acquisition from The Embedding Space

Automatically predicting knowledge: 787B + ProducedBy ≈ Mazda

- A much less expensive way for knowledge acquisition
- Yet can still suffer from sparsity and noise of known knowledge

Knowledge Is Not Isolated

Different sources of data can possess complementary knowledge

Knowledge Is Not Isolated

Different sources of data can possess complementary knowledge

Key Research Questions

Interrelated knowledge in different domains/sources

- Multiple language-specific KGs
- Multiple knowledge bases

•

- Instance KGs and concept ontologies (different specificity)
- Protein-protein interaction (PPI) data, gene ontologies and cell clusters
- Drug-drug interaction data, disease ontologies and PPI data
- Social networks and product graphs

Can we capture the association of knowledge with representation learning? And use knowledge transfer to populate missing knowledge?

Key Research Questions

How to acquire structured knowledge from unstructured data?

- Provide globally consistent inference
- Learning to acquire knowledge with limited and indirect supervision
- Acquisition from modalities beyond human languages (molecular and biomolecular sequences, EHR, etc.)

Roadmap of Research Contributions

Transferable Rep. Learning for Relational Data

Knowledge Acquisition from Unstructured Data

How do we capture the **association of knowledge** with **minimal supervision**?

How do we identify and transfer **complementary knowledge**?

How to provide reliable inference (e.g. ensuring the **logical** or **probabilistic constraints**)?

Generalizable learning, but with limited supervision?

Roadmap of Research Contributions

	Transferable Rep. Learning for Relational Data				Knowledge Acquisition from Unstructured Data		
	 Minimally supervised knowledge alignment Semi-suervised knowledge alignment (first prototype) [IJCAI-17, AKBC-17] 	ust embedding learning nd knowledge transfer perty-aware embedding M-18] perbolic embedding [SIGIR-		 Learning with constraints and indirect supervision Logical constraints [EMNLP-20c] ◀ Probabilistic soft constraints [AAAI-19] Few-shot learning with indirect supervision [CoNLL-20, Best Paper Nomination] ◀ 			
	 Co-training [JCAI-18] Distant supervision [KDD-19] Visual pivoting [AAAI-21a] Incidental supervision [EACL-21] 	19,MulNoiMet tran	 19, EMNLP-20a] Multi-view learning [IJCAI-19] Noise-aware GNN [AAAI-20a] Meta-learnable knowledge transfer [EMNLP-20b] 		 Robust and generalizable learning and inference Paraphrase-aware retrofitting [EMNLP-19] Analogy-aware inference [EMNLP-20d] Language modeling for proteins [ISMB-19, <i>Bioinformatics</i> [J] 2019, NAR GaB [J] 2020] 		
 KB Construction KB Completion [AAAI-19, EMNLP-20b] Entity alignment [many above] Type inference [KDD-19,EMNLP-20a] Natural Lange Relation extraction Event prediction Event process Paper Nomination DocRel extraction 		 Natural Language Ur Relation extraction [EMN Event prediction [EMNLP Event process typing [Construction] DocRel extraction [ECMI 	nd NLF >-2 oN	erstanding P-20c] 20d] LL-20, Best 18, Plenary]	 Bio/medical Informatics Proteomics [ISMB-19,Bioinformatics [J] 2019, NAR GaB [J] 2020] ◄ Diagnostic prediction [AIME-20] Disease target prediction [ACM BCB-20, Best Student Paper] ◄ 		
	 Benchmarking and survey paper [PVLDB 2020] Transferable Representation Learning Tutorial [AAAI-20b] 				Knowledge Ac [AAAI-21b, AC	quisition and Event-centric NLU tutorials CL-21]	

Tasks

Outreach

Transferable Representation Learning of Multi-relational Data

Knowledge Acquisition from Unstructured Data

Future research agenda

Transferable Representation Learning for Multi-relational Data

Capture the knowledge association with minimal supervision in a universal embedding scheme for

- Multiple language-specific KGs
- Multiple KBs
- Abstract concepts and specific entities
- Proteomic interactions and gene ontologies
- Cells and genomic interaction data
- Molecular data, medical ontologies and drug interaction data
- Social relations and product graphs
- . . .

Transfer knowledge from some domains to enrich others

A General Methodology to Benefit A Wide Range of Tasks

Transferable

representation learning

Knowledge Base

Knowledge alignment KG completion Ontology population

Semantic search Entity typing Dialogue state tracking Paraphrase identification ndm Singer interactions interac

Protein-protein interaction prediction Protein binding affinity estimation Single cell RNA-sequence imputation Gene Ontology term assignment

Polypharmacy side effect detection Disease and phenotype matching Clinical event prediction

Scenario 1: KGs in Different Languages

Separately created language-specific KGs

• DBpedia has **125 language-specific versions**; Wikidata has **410 of those**.

The First Prototype: Simple Translational Model + Supervised Association Learning (MTransE^{*}) *[IJCAI-17]

- Training data: a pair of weakly aligned language-specific KGs
- Enabling: cross-lingual semantic transfer + relational inference

Joint Learning of MTransE

Application: Knowledge Alignment

		-	-	•	0
Entity	Target	Candidates (in as	cending order of r	ank by Euclid	lean distance)
Barack	French	Barack Obama,	George Bush, Jin	ımy Carter, G	eorge Kalkoa
Obama	German	Barack Obama,	Bill Clinton, Geo	rge h. w. Bush	ı, Hamid Karzai
Dorio	French	Paris, Amsterdan	n, <mark>à Paris</mark> , Manch	<i>ester</i> , De Sme	et
1 4115	German	Paris, Languedoo	c, Constantine, Sa	int-maurice, I	Vancy
California	French	San Francisco, L	os Angeles, Santa	Monica, Cali	fornie
	German	Kalifornien, Los	Angeles, Palm Sp	rings, Santa M	Monica

Table 8: Examples of cross-lingual entity matching.

Table 9: Examples of cross-lingual relation matching.

Relation	Target	Candidates (in ascending order of rank by Euclidean distance)
capital	French	capitale, territoire, pays accrèditant, lieu de veneration
capital	German	hauptstadt, hauptort, gründungsort, city
nationality	French	nationalié, pays de naissance, domicile, résidence
nationality	German	nationalität, nation, letzter start, sterbeort
language	French	langue, réalisations, lieu deces, nationalitè
language	German	sprache, originalsprache, lang, land

This pilot study got ~30% Hits@1 on DBP15k. But we will introduce lots of improvement to it shortly.

Bold-faced ones are correct answers, *italic* ones are close answers. Answers do not include those that have pre-existed in training.

Cross-lingual Fact Prediction, e.g.

Table 10: Examples of cross-lingual triple completion.

Query	Target	Candidates (in ascending order of rank)
(Adam Lambert,	French	<i>musique indèpendante</i> , musique alternative , ode, glam rock
genie, : <i>i</i>)	German	popmusik, dance-pop, no wave, soul
(Ronaldinho,	French	milieu offensif, attaquant, quarterback, latèral gauche
position, ?t)	German	stürmer, linker flügel, angriffsspieler, rechter flgel
(Italy 2r Rome)	French	capitale, plus grande ville, chef-lieu, garnison
(Italy, 17, Rome)	German	hauptstadt, hauptort, verwaltungssitz, stadion
(Barack Ohama 2r	Franch	ministre-prèsident, prèdècesseur, premier ministre,
(Darack Oballia, 17, George Bush)	French	prèsident du conseil
George Busil)	German	vorgänger, vorgängerin, besetzung, lied

Bold-faced ones are correct answers, *italic* ones are close answers. Answers do not include those that have pre-existed in training.

General Framework and Further Improvement

Jointly or iteratively conduct two learning processes: embedding learning and knowledge association learning

Three directions to improvement

- 1. More precise embedding alignment requiring less supervision
- 2. Auxiliary supervision from entity profile information
- 3. Better embedding learning techniques for inconsistent structures

(1) Semi-supervised Co-training With Entity Descriptions* *[IJCAI-18]

The alignment information is often limitedly provided to connect KG structures

Iterative co-training of embeddings for KG structures and entity descriptions

DBpedia covers less than 20% entity alignment for En-Fr, and less for other cases.

Inter-lingual Link (ILL): (<u>astronomer@</u>EN, <u>astronome@</u>FR)

EN triple: (Ulugh Beg, occupation, astronomer) FR triple: (Ulugh Beg, activité, astronome)

An astronomer is a scientist in the field of astronomy who concentrates their studies on a specific question or field outside of the scope of Earth...

Un astronome est un scientifique spécialisé dans l'étude de l'astronomie...

An Entity Description Embedding Model

Siamese document encoder with Selfattention + Pre-trained bilingual word embeddings

To collocate the embeddings of entity description counterparts

*[IJCAI-18] Learning-to-rank w/ negative batch sharing [Chen+ KDD-17] **Non-linear Affinity** Self-attention Gated Recurrent units Gated Recurrent units An astronomer is a scientist in the Un astronome est un field of astronomy who scientifique spécialisé concentrates their studies on a dans l'étude de specific question or field outside l'astronomie... of the scope of Earth... *****************

Iterative Co-training Process

(2) Knowledge Alignment Using Incidental Supervision From Free Text*

Three steps

- 1. (Noisy) grounding: connecting KGs and text corpora
- 2. Embedding learning: GNN + a neural language model
- 3. Alignment learning: self-learning for both entity and lexical alignment

(3) Hyperbolic Knowledge Association*

*[EMNLP-20a]

Transferable, ultra low-dimensional hyperbolic embeddings (15-30).

• Non-linear distance metric $d_{\mathbb{D}}(\mathbf{u}, \mathbf{v}) = \operatorname{arccosh}(1+2\frac{\|\mathbf{u}-\mathbf{v}\|^2}{(1-\|\mathbf{u}\|^2)(1-\|\mathbf{v}\|^2)})$

Also applied to entity type inference.

- Suitable for capturing knowledge association between hierarchical KGs.
- and KGs with significantly different scales (e.g. an instance-graph vs a concept graph).

(4) Multi-modal Entity Alignment*

*[AAAI-21]

(Unsupervised) visual pivoting by identifying visually similar entities

- ResNet + GCN with bootstrapping
- Particularly benefits long-tail entities

(5) Noise-aware Multi-hop Graph Attention⁺

+[AAAI-20]

A robust GNN encoder against the inconsistency of entity neighborhoods in different KGs.

Performance by Our Methods on Semi-supervised Entity Alignment

DBP15k: the benchmark dataset for entity alignment.

*The Candidate space of each test case is 63k~98k entities for each language

Our Method Outperforms The Well-known Ontology Matching System (LogMap v2.4)

Multi-KE vs. LogMap2.4 on Aligning 100K-scale Subsets of DBPedia to Yago and Wikidata

***MultiKE** [IJCAI'19] is a monolingual ontology matching framework with multi-view embeddings of triples, literals, descriptions and attributes.

Recent Advances on Embedding-based Knowledge Alignment

Follow-ups on the same topic

- 2017: IJCAI×2, ISWC×1
- 2018: AAAI×2, COLING×1, ACL×1, EMNLP×1, IJCAI×3
- 2019: AAAI×2, ACL×3, EMNLP×4, ICLR ×1, ICDM×1, ICML×1, IJCAI×6, ISWC×2, KDD×1, WWW×1, WSDM ×1
- 2020: AAAI×3, ACL×1, COLING ×1, CIKM ×1, EMNLP×4, ICDE ×1, ICLR×2, IJCAI×2, ISWC×1, NeurIPS×1, KDD ×2, VLDB×1, WWW×1, WSDM×2

More approaches for embedding learning

 Long-term dependency models, R-GCN, hyperbolic embeddings, holographic embeddings, Gaussian embeddings, etc.

More knowledge association methods

• Adversarial alignment learning, optimal transport, meta learning, noisy supervision, etc.

A systematic summary was given as our AAAI-2020 tutorial, + a benchmarking study and survey in PVLDB vol. 13 (2020).

Relation Inference with Knowledge Transfer

Knowledge transfer to populate a sparser KG (e.g. French)

 Obtain the answer of queries (*h*, *r*, *?t*) in the embedding space of a wellpopulated version (e.g. English) of KG

Cross-lingual knowledge transfer can improve sparse KG completion.

Meta-learnable Knowledge Transfer Among Multiple KGs

Transferable Embeddings + Meta-learning w/ RankBoost-based Model Weights

Scenario 2.a: Transferable Embedding for Instances and Abstract Concepts^{*} *[KDD-19]

Ontology view: meta-relations of commonsense concepts **Instance view**: relations of entities instantiated from concepts

Application: Entity Typing

*[KDD-19]

Type inference (906 labels) on 40% of >111k entities in YAGO.

Examples of long-tail entity typing (Least 15%)

Entity	Model	Top 3 Concept Prediction
Lourence	DistMult	football team, club, team
Fishburne	MTransE	writer, person , artist
Tishburne	JOIE	person, artist, philosopher
Warangal	DistMult	country, village, city
City	MTransE	administrative region, city , settlement
City	JOIE	city , town, country
Royal Victor	DistMult	person, writer, administrative region
ion Order	MTransE	election, award, order
-ian Ofder	JOIE	award, order , election

Typing accuracy on long-tail entities (Least 15%)

	Datasets	YAGO26K-906				
	Metrics	MRR	Acc.	Hit@3		
DistMult		0.156	10.89	25.33		
	MTransE	0.526	46.45	67.25		
	JOIE-TransE-CG	0.708	59.97	79.80		
JOIE-TransE-CT		0.737	62.05	82.60		
	${\tt JOIE}\text{-}HATransE\text{-}CT$	0.802	69.66	87.75		

Application: KG Completion

*[KDD-19]

Predicting the 10% held-out relation facts on both views.

Joint representation improves the task on both views.

JOIE-CG

Models

JOIE-CT

JOIE-HACT

HolE

DistMult

Triple completion on the ontology view

Transfer Instance-level Knowledge for Ontology Population

Examples of ontology population Top 3 Populated Triples with distances Query scientist, *graduated from*, university (0.499) (scientist, ?r, scientist, *isLeaderOf*, university (1.082) university) scientist, *isKnownFor*, university (1.098) boxer, *playsFor*, club (1.467) (boxer, ?r, boxer, *isAffiliatedTo*, club (1.474) club) boxer, *worksAt*, club (1.479) scientist, *doctoralAdvisor*, scientist (0.204) (scientist, ?r, scientist, *doctoralStudent*, scientist (0.221) scientist) scientist, *relative*, scientist (0.228)

Populating unseen ontological facts by — transferring knowledge from instance-view facts.

Scenario 3.a: Proteomics and Gene Ontologies

*[ACM BCB-20] (Best Student Paper)

Transferring knowledge from the gene ontology improves typed protein-protein interaction prediction.

~10% of ACC improvement over SOTA (Opa2Vec, *Bioinformatics* [J] 2019).

and helps disease target prediction for COVID-19 related viral proteins.

pCMF [Durif+, *Bioinform.* 2019] and others. Cell Clusters (Inferred) Cell 6 Cell 1 Cell 5 Cell 4 zygote Cell 2 Cell 3 E-2 cell - 8 M-2 cell View I = CellsL-2 cell Actual 4 cell 8 cell Fuzzy Alignment – Single-cell RNA 16 cell E-blastocyst-24 15 1 sequencing transcripts M-blastocyst-L-blastocyst-View II = Genes Gene 5 Gene 1 Gene 6 Non-negative Tri-Factorization Gene 3 $\operatorname{argmin} \left\| S - \mathbf{E}_1 \mathbf{U} \mathbf{E}_2^{\mathrm{T}} \right\|$ Gene 4 Gene 2 Gene KG (derived from PPIs)

At least **10-15%** of ARI improvement over

Experiment done on the Zeisel dataset [Zeisel+, Science 2015]

Scenario 3.b: Cell Clustering

More Applications To Be Explored

Polypharmacy (drug-drug) interaction or drug-target prediction **Product recommendation**

Transferable Representation Learning of Multi-relational Data

Knowledge Acquisition from Unstructured Data

Future research agenda

Knowledge Acquisition for Events

Human language always communicates about events.

How to earn a PhD?

DARPA & IARPA projects: KAIROS, BETTER, AIDA

Logically Constrained Learning for Event Relation Extraction

- Temporal Relations
- Subevent Relations (Memberships)
- Event Coreference

On Tuesday, there was a typhoon-strength $(e_1:storm)$ in Japan. One man got $(e_2:killed)$ and thousands of people were left stranded. Police said an 81-year-old man $(e_3:died)$ in central Toyama when the wind blew over a shed, trapping him underneath. Later this afternoon, with the agency warning of possible tornadoes, Japan Airlines $(e_4:canceled)$ 230 domestic flights, $(e_5:affecting)$ 31,600 passengers.

- Subevent and Coref: HiEve
- Annotations are on ~100 documents

Logical Constraints of Relations

Symmetry

Transitivity

e1:storm is PARENT of e4:canceled

Ae4:canceled is a PARENT of e5:affecting

=> e1:storm is a PARENT of e5:affecting

e3:died is BEFORE e4:canceled=> e4:canceled is AFTER e3:died

Conjunction

e3:died is BEFORE e4:canceled
^e4:canceled is a PARENT of e5:affecting
=> e3:died BEFORE e5:affecting

(we also consider *Implication* and *Negation*)

Why logical constraints in learning?

- Learning to provide globally consistent predictions
- Providing indirect supervision across tasks/learning resources

Incorporating Logical Constraints in A Neural Architecture

From logical constraints to differentiable functions

- L_A Annotation Loss: $\top \rightarrow r(e_1, e_2) \ \square \ -w_r \log r_{(e_1, e_2)}$
- L_S Implication Loss: $\alpha(e_1, e_2) \leftrightarrow \bar{\alpha}(e_2, e_1) \quad [\rightarrow] \mid \log \alpha_{(e_1, e_2)} \log \bar{\alpha}_{(e_2, e_1)} \mid$
- L_C Conjunction Loss: $\alpha(e_1, e_2) \land \beta(e_2, e_3) \rightarrow \gamma(e_1, e_3) \xrightarrow{} \log \alpha_{(e_1, e_2)} + \log \beta_{(e_2, e_3)} \log \gamma_{(e_1, e_3)}$ $\alpha(e_1, e_2) \land \beta(e_2, e_3) \rightarrow \neg \delta(e_1, e_3) \xrightarrow{} \log \alpha_{(e_1, e_2)} + \log \beta_{(e_2, e_3)} - \log(1 - \delta_{(e_1, e_3)})$
- Training Objective: $L = L_A + \lambda_S L_S + \lambda_C L_C$

α β	PC	СР	CR	NR	BF	AF	EQ	VG
PC	PC, $\neg AF$	_	PC, $\neg \mathbf{AF}$	$\neg CP, \neg CR$	<mark>BF</mark> , ¬CP, ¬CR	_	<mark>BF</mark> , ¬CP, ¬CR	—
CP	_	CP, ¬ <mark>BF</mark>	CP, ¬BF	$\neg PC, \neg CR$	—	AF , $\neg PC$, $\neg CR$	$ $ AF , \neg PC , \neg CR	—
CR	PC, $\neg \mathbf{AF}$	CP, ¬ <mark>BF</mark>	CR, <mark>EQ</mark>	NR	$ \mathbf{BF} $, $\neg CP$, $\neg CR$	AF , $\neg PC$, $\neg CR$	EQ	VG
NR	$\neg CP, \neg CR$	$\neg PC, \neg CR$	NR	—	—	—	—	—
BF	\mathbf{BF} , $\neg \mathbf{CP}$, $\neg \mathbf{CR}$	_	BF , ¬CP, ¬CR	—	BF , $\neg CP$, $\neg CR$	_	<mark>BF</mark> , ¬CP, ¬CR	$\neg AF, \neg EQ$
AF	-	AF , $\neg PC$, $\neg CR$	AF , $\neg PC$, $\neg CR$	—	—	AF , $\neg PC$, $\neg CR$	AF , $\neg PC$, $\neg CR$	$\neg BF, \neg EQ$
EQ	¬AF	¬BF	EQ	—	<mark>BF</mark> , ¬CP, ¬CR	AF , $\neg PC$, $\neg CR$	EQ	VG, ¬CR
VG	—	—	VG, ¬CR	_	$\neg AF, \neg EQ$	$\neg BF, \neg EQ$	VG	_

Symmetry and negation are subsumed within implication loss; Transitivity is subsumed within conjunction loss.

The Joint Constrained Learning Architecture

- Temporal Relations
- Subevent Relations (Memberships)
- Event Coreference

Logical constraints

• Symmetry, transitivity, conjunction, implication. Converting constraints into differentiable learning objectives

Logically Constrained Learning for Event Relation Extraction

Constrained learning surpasses SOTA TempRel extraction on MATRES [Ning+, ACL-18] by relatively 3.27% in F₁.

Model	P	R	F_1
CogCompTime (Ning et al., 2018c)	0.616	0.725	0.666
Perceptron (Ning et al., 2018b)	0.660	0.723	0.690
BiLSTM+MAP (Han et al., 2019b)	-	-	0.755
LSTM+CSE+ILP (Ning et al., 2019)	0.713	0.821	0.763
Joint Constrained Learning (ours)	0.734	0.850	0.788

On HiEve [Glavaš+, LREC-14] for subevent extraction, it relatively surpasses previous methods by at least 3.12% in F₁.

	F_1 score			
Model	PC	CP	Avg.	
StructLR (Glavaš et al., 2014)	0.522	0.634	0.577	
TACOLM (Zhou et al., 2020a)	0.485	0.494	0.489	
Joint Constrained Learning (ours)	0.625	0.564	0.595	

Key Observations

- Constraints are a natural bridge for learning resources with different sets of relations
- Adding constraints in learning is sufficient to enforce logical consistency of outputs, surpassing ILP in inference (w/ constrained learning) by 2.6-12.3% in ACC

*[EMNLP-20c]

More About Eventuality Knowledge Acquisition from Text

Few-shot *intention prediction* for event processes based on indirect supervision from gloss knowledge [CoNLL-20 Best Paper Nomination]

Open-domain event schema induction with analogy-aware inference [EMNLP-20d]

Muhao Chen, Hongming Zhang, Qiang Ning, Heng Ji, Kathleen McKeown, Dan Roth. Event-centric Natural Language Understanding. Tutorials in AAAI 2021 and ACL 2021

Probabilistic Constrained Knowledge Acquisition*

*[AAAI-19]

Incorporating Probabilistic Soft Logic constraints in learning (w/ Łukasiewicz t-norm)
Confidence prediction for unseen facts

Retrofitting language models for robust discourse relation detection⁺

+2.60-3.30% (acc) on textual inference and +3-5% (Pearson's) in textual similarity (SentEval) +5.4% (acc) on Adversarial SQuAD.

*[EMNLP-19]

Knowledge Acquisition Beyond Human Languages

"Entailment model" for Protein-protein interaction prediction [ISMB'19, *Bioinformatics 2019*].

ΔΔG estimation on SKEMPIv2 benchmark:
~20% of absolute improvement (0.69>0.88) in Pearson's Corr over SOTA!

Pre-trained language model on wild-type protein sequences helps estimate point mutation effects on proteins [*NAR: Genom. Bioinform.* 2020].

Transferable Representation Learning of Multi-relational Data

Knowledge Acquisition from Unstructured Data

Future research agenda

What's Next

extreme label spaces

Robust Learning Systems with Generalizability

Future direction: using transfer learning to predict PPI for > 1.3 million low-resource species.

Robust Learning Systems with Generalizability

General methodologies for domain-adaptive learning/inference

- Domain-invariant feature extraction
- Massively pre-training
 - Language- and domain-invariant KG embedding (ongoing)
 - Pre-training language models on thousand-species genomic/proteomic data

Cross-domain tasks

- NLP tasks on >6000 low-resource languages
- PPI, folding energy, 3D structure prediction, functional annotation ... for > 1.3 million lowresource species
- Clinical data processing [AIME-20] (low-resource due to privacy)

Support Learning With Minimal Supervision

Representing Structures of Feature and Label Spaces

- Non-Euclidean representation learning
- Set learning for order-invariant data
 - Concurrent clinical events [AIME-20]

Indirect supervision

- Leverage cheap supervision signals from auxiliary data / tasks
- Learning with noisy labels (ongoing direction)
- Learning/inference with dependency of labels

Reliable and Knowledge-aware Learning Systems

Null prediction problem

- Lots of NLU models for entity typing, entity alignment, entity linking, semantic IR, QA, ...
- How to let them understand when there is no answer to a query?

Making language models aware of knowledge

- Eventuality knowledge*
- Temporal knowledge

*Will be discussed in our AAAI-21 and ACL-21 tutorials about Event-centric NLU.

Cross-domain and Interdisciplinary Research

A useful technology may benefit multiple research areas and disciplines, and it is important to let it contribute to the Common Good.

Acknowledgement

My 72 coauthors from 15 institutes. We wrote 50 papers together in the past 6 years.

- Carlo Zaniolo, Kai-Wei Chang, Wei Wang, Alex Bui, Yizhou Sun, Mario Gerla, Eleazar Eskin, Jessica Li, Demetr Terzopoulos, Chelsea Ju, Dat Duong, Guangyu Zhou, Tianran Zhang, Jyun-Yu Jiang, Junheng Hao, Wenchao Yu, Weijia Shi, Shirley Chen, Jieyu Zhao, Kuan-hao Huang, Jiaqi Gu, Qi Zhao, Pengyuan Du, Tuan Le, Seunghyun Yoo, Zijun Xue, Pei Zhou, Tao Zhou, Zheng Wang, James Zhang, Ankith Uppunda (UCLA)
- Dan Roth, Ben Zhou, Haoyu Wang, Hongming Zhang (UPenn)
- Nigel Collier, Fangyu Liu (Cambridge)
- Heng Ji, Manling Li (UIUC)
- Andrew McCallum, Michael Boratko (UMass)
- Kathleen McKeown (Columbia)
- Bryan Perozzi, Gang Huang, Mohan Yang, Shi Gao, Jie Mao (Google)
- Chris Quirk (Microsoft)
- Changping Meng, Jennifer Neville (Purdue)
- Steven Skiena, Yingtao Tian, Haochen Chen, Xiaofei Sun, Syed Fahad Sultan (SUNY SBU)
- X. Sean Wang, Jingheng Zhou (Fudan)
- Zequn Sun, Jiacheng Huang, Wei Hu, Yuzhong Qu, Chengming Wang, Lingbing Guo, Qingheng Zhang, Jiacheng Huang (NJU)

PURDUE

University

- Qiang Ning (Al2)
- Changjun Fan, Li Zeng, Zhong Liu (NUDT)
- Chengkai Li, Farahnaz Akrami (U. Texas)

Thank You

Sequence-based Protein-Protein Interaction (PPI)

*[ISMB'19, Bioinformatics 2019]

MQSPYPMTQVSNVDDGSLLK...

Interact or not?

Interaction type? (Binding, catalysis, inhibition, ...)

Binding affinity? (ΔG)

Amino acid sequence 2

MLERIQQLVNAVNDPRSDVAT...

UCLA

PIPR: Multifaceted Protein-Protein Based on Only Sequences

Multi-faceted PPI Prediction

 Also reaches SotA performance on PPI type prediction and binding affinity estimation on three other benchmark datasets

*[ISMB'19, Bioinformatics 2019]

Point Mutation Effect Estimation

- Mutations (very slight changes) are very difficult to be captured
- 1 or 2 point mutations may cause a significant change to a PPI property

MuPIPR: Pre-trained Amino Acid Language Model + Multi-task Learning

Estimation of PPI Property Changes *[NAR Genom. Bioinform. 2020]

Change of Binding Affinity Estimation on SKEMPI: MuPIPR On SKEMPI: ~20% of (left) vs. SotA (BindProfX [Xiong+ J. Mol Bio 2018]) absolute improvement 0.883 0.9 2 in Pearson's Corr over SotA. 1.5 0.8 Also offering strong 0.69 1 0.7 performance on de novo prediction. 0.5 0.6 RMSE (kcal/mol)

Also significantly better in estimating change of buried surface area (ΔBSA)

MuPIPR 0.695 vs. SotA 0.329 in Corr